Инфракрасная сенсорная технология. Что лучше: резистивный или емкостной экран? Типы сенсорного экрана. Сенсорные системы на основе применения ультразвуковых волн

Сенсорные технологии May 27th, 2011

Удобнее кнопки и колеса

Интересно, догадывались ли Генри Эдвард Робертс и Мартин Купер, создавая первые в мире персональный компьютер и мобильный телефон, о том, что п ройдет каких-то полвека и уже привычное использование коммуникативных устройств - клавиатуры, мышки и джостика - отойдут на второй план?

Сегодня появился совершено иной способ взаимодействия человека и стационарного или портативного компьютера - это сенсорные технологии , которые также нашли активное применение в сенсорных информационных киосках самообслуживания и платежных терминалах и значительно упростили процесс «общения» потребителя с высокотехнологичным оборудованием. Современное сенсорное оборудование стало настолько притягательным и интуитивно понятным, что с ним могут работать даже неподготовленные пользователи.

Сенсорные технологии основаны на воздействии четырех базовых видов волн: резистивных, поверхностно-акустических, поверхностно-емкостных и инфракрасных и позволяют человеку принимать непосредственное (контактное) участие в запросе информации, осуществлении платежей и заказов и.т.д.

Как показывает практика, нашим клиентам важно знать о сенсорных технологиях больше, поэтому на нашем сайте мы публикуем описание базовых сенсорных технологий, которые легли в основу разработки сенсорных экранов :

Резистивная сенсорная технология.

Принцип работы резистивного экрана основан на действии резистивных волн. Такой экран имеет многослойную структуру и состоит из стеклянной панели и гибкой пластиковой мембраны, где н а панель и мембрану нанесено резистивное покрытие.

Пространство между стеклом и мембраной заполнено микроизоляторами, которые равномерно распределены по активной области экрана и надёжно изолируют проводящие поверхности. Во время нажатия на мембрану замыкаются резистивные покрытия и специальный контроллер регистрирует изменение сопротивления между электродами, преобразуя это изменение в координаты.

Различают четырех- и пятипроводные резистивные экраны. На мембране пятипроводного

резистивное покрытие заменено проводящим. Это позволяет сохранить работоспособность резистивного экрана даже при порезах на мембране, такой экран считается наиболее надежным.

Резистивные сенсорные экраны зарекомендовали себя в сфере обслуживания в составе POS-терминалов, промышленности, медицине, транспорте.Они обладают максимальной стойкостью к загрязнению, отличаются надежностью и долговечностью. Экран выдерживает 35 миллионов прикосновений к одной точке.

Поверхностно-аккустическая сенсорная технология (ПАВ).

Такие экраны работают на основе технологии поверхностно-акустических волн и представляют собой стеклянную панель, что позволяет получить максимально качественное изображение на сенсорном экране.

Такие экраны построены на принципе использования миниатюрных пьезоэлектрических излучателей звука, не слышимых человеком, установленных в трех углах экрана. Этот сигнал преобразуется в ультразвуковую акустическую волну, направляемую вдоль поверхности экрана, а сам экран представляется для программы управления сенсорными датчиками в виде цифровой матрицы, каждое значение которой соответствует определенной точке экранной поверхности. Специальные отражатели распространяют акустическую волну по всей поверхности экрана. Прикосновение к экрану меняет картину распространения акустических колебаний, что регистрируется датчиками. По изменению характера колебаний можно вычислить координаты возмущений и силу нажатия.

Сенсорный экран, основанный на технологии поверхностно-акустических волн обеспечивает максимальную прозрачность и высокое качество изображения, работоспобен даже при наличии царапин, фиксирует точные координаты и силу прикосновения, имеет антибликовое покрытие. Сенсорный экран может реагирует на прикосновение пальца, руки в перчатке и стилоса.

Инфракрасная сенсорная технология.

Инфракрасные сенсорные панели работают по двум очень сложным методикам.

Первая методика основана на использовании изменения выделенного тепла на поверхности панели. Этот метод не очень практичен, так как требует, чтобы руки были всегда теплыми.

Другая методика подразумевает расположение инфракрасных сенсоров по всему периметру панели, которые улавливают прерывание в потоке световых лучей над поверхностью экрана при прикосновении. Если один из инфракрасных лучей перекрывается попавшим в зону действия лучей посторонним предметом, луч перестает поступать на приемный элемент, что тут же фиксируется микропроцессорным контроллером. Таким образом вычисляется координата касания. Отметим, что не имеет значения, какой из предметов (палец, авторучка, перчатка) помещен в рабочее пространство инфракрасному сенсорного экрана.

Считается, что инфракрасные сенсорные панели имеют самую прочную поверхность, и чаще всего используются в образовательных учреждениях (в качестве интерактивных панелей большого размера), медицинских , правительственных и государственных организациях , игровых автоматах, а также в военных целях.

Емкостная (электростатическая) или поверхностно-емкистная технология.

Существует два варианта емкостных экранов: поверхностно-емкостные и проекционно-емкостные. В обоих случаях управление осуществляется не нажатием, а касанием экрана. В основе технологий лежит способность человека проводить электрический ток.

Емкостный (электростатический) сенсорный экран обладает некоторым электрическим зарядом. Прикасаясь к сенсорному экрану, человек несколько меняет картину заряженности, перенимая часть заряда к точке нажатия. Датчики экрана расположены по всем четырем углам и следят за течением заряда на экране, определяя координаты прикосновения.

Ёмкостные экраны также отличаются надёжностью и высокой степенью прозрачности и долговечностью - возможность до миллиарда нажатий в одно и то же место. Однако, как правило, в работе с таким экраном нельзя пользоваться вспомогательным предметом (стилусом, перчаткой и т.п..) - только пальцем. Хотя уже существуют такие ёмкостные экраны, где возможна работа со специально изготовленного под данный вид экрана стилусом.

Емкостные сенсорные мониторы имеют хорошую прозрачность, долговечны, поэтому интенсивно используются в многолюдных местах: торгово-развлекательных центрах, супермаркетах, авиа- и ж/д кассах, на улице и т.д.

Существует также и другие новейшие сенсорные технологии, например, multi-touch с функцией сенсорных систем ввода, осуществляющая одновременное определение координат двух и более точек касания.

В последнее время начали активно разрабатываться и применяться схемы бесконтактной работы с сенсорным экраном. Современные датчики сенсорных экранов реагируют на тепло, движение рук, и совсем необязательно прикасаться к экрану. Такая система датчиков фиксирует движение пальца на расстоянии до двух сантиметров над поверхностью экрана.

Применение и развитие сенсорных технологий сегодня дает новый импульс развитию медицины, автомобилестроения, образования, банковской сферы, технологии «умный дом», преобразуются игры и развлечения, сервис и торговля и многое другое.

Благодаря широкому распространению мобильных устройств, а также различной потребительской электроники, в частности карманных персональных компьютеров, переносных навигаторов и игровых приставок, сенсорные дисплеи все более уверенно занимают собственную нишу во многих сторонах нашей жизни.

В настоящее время используются несколько видов сенсорных дисплеев, однако наиболее широко применяются следующие четыре технологии:

Резистивная (Resistive);

Инфракрасная (Infrared);

Емкостная (Capacitive);

Поверхностно-акустической волны (SAW).

Все указанные технологии имеют свои собственные отличительные черты, выгоды, преимущества и недостатки.

Резистивная технология сенсорных экранов

Резистивный сенсорный экран имеет многослойную структуру, состоящую из двух проводящих поверхностей, разделенных специальным изолирующим составом, распределенным по всей площади активной области экрана.

При касании наружного слоя, выполненного из тонкого прозрачного пластика, его внутренняя проводящая поверхность совмещается с проводящим слоем основной пластины (может быть сделана из стекла или полиэстера), играющей роль каркаса конструкции, благодаря чему происходит изменение сопротивления всей системы. Это изменение фиксируется микропроцессорным контроллером, передающим координаты точки касания управляющей программе компьютера.

Срабатывание происходит от нажатия пальцем или другим твердым предметом. Резистивные сенсорные экраны устойчивы к воздействию грязи, пыли, жира и многим жидкостям (таким как вода, ацетон, пиво, чай, кофе и др.), в том числе и некоторым химически едким.

Основные особенности резистивных сенсорных экранов (touchscreen):

превосходные показатели качества;

отличные технические характеристики;

ввод информации как стилусом, так и пальцем;

типичная прозрачность - 80%.

Резистивная продукция является самой привлекательной в ценовом отношении, так как стоит достаточно недорого. Также к преимуществам резистивных дисплеев можно отнести высокое разрешение, возможность использовать обычный металлический или пластиковый стилус, устойчивость к таким воздействиям, как пыль, грязь, вода и интенсивное освещение. Однако у данного вида продукции имеются и свои недостатки. К примеру, четкость изображения этого вида сенсорных дисплеев недостаточно высока. А сами дисплеи нуждаются в регулярной калибровке вследствие того, что начинается рассогласовывание места реакции системы с местом нажатия. Иногда возможен и такой вариант, что резистивный дисплей может реагировать синхронно более чем на одно нажатие. Помимо всего вышеперечисленного, такие дисплеи достаточно хрупкие, что в значительной мере ограничивает их использование.

Емкостная технология сенсорных экранов

Чувствительный элемент емкостного сенсорного экрана представляет собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие. Вдоль краев стекла расположены узкие печатные электроды, равномерно распределяющие низковольтное электрическое поле по проводящему покрытию. Поверх проводящего слоя наносится защитное покрытие. При прикосновении к экрану образуется емкостная связь между пальцем и экраном, что вызывает импульс тока в точку контакта. Электрический ток из каждого угла экрана пропорционален расстоянию до точки касания, таким образом, контроллеру достаточно просто сравнить эти токи для определения места касания. Результат - прозрачный экран с малым временем отклика, обладающий высокой прочностью и долговечностью.

На сегодняшний день, сенсорный экран с технологией ThruTouch является уникальным и единственным сенсорным экраном, предназначенным для использования в уличных платежных терминалах или информационных киосках.

Данная технология первоначально была применена в таких моделях, как сотовые телефоны iPhone и LG Prada. При этом сенсор располагался под слоем минерального стекла, дававшего ему дополнительную защиту от царапин, а, следовательно, повышавшим его надежность. Электрические свойства проводников претерпевают изменение уже в момент приближения пальца к дисплею. Именно поэтому iPhone великолепно откликается даже на легкие касания. Проекционно-емкостные дисплеи позволяют в одно и то же время фиксировать несколько нажатий. К примеру, в iPhone для зумирования применяют двухпальцевые жесты.

iPhone, благодаря своей популярности, удалось стать прародителем характерного дизайна для большей части «сенсорных» телефонов.

Отличительной чертой стал элегантный моноблок с крупным сенсорным дисплеем и минимальным числом кнопок.

Экран iPhone отличается великолепным разрешением пикселей (320х480). Картинка на дисплее живая и яркая, с большим углом обзора и к тому же безупречным поведением на солнце. Подсветка экрана быстро меняется в зависимости от степени освещенности.

Дисплей iPhone также снабжен датчиками, реагирующими на движение, что дает возможность автоматически изменять его ориентацию при повороте телефона.

Стилус для iPhone не предусмотрен, к тому же устройство на него не реагирует. Однако удобство работы с дисплеем от этого никак не страдает.

iPhone удобен прежде всего для работы с Интернетом, поэтому большая часть фишек предназначена для работы в браузере. К ним можно отнести, к примеру, оптимизацию размеров интернет-страниц путем двойного нажатия.

6. Сенсорные технологии

Благодаря широкому распространению мобильных устройств, а также различной потребительской электроники, в частности карманных персональных компьютеров, переносных навигаторов и игровых приставок, сенсорные дисплеи все более уверенно занимают собственную нишу во многих сторонах нашей жизни.

В настоящее время используются несколько видов сенсорных дисплеев, однако наиболее широко применяются следующие четыре технологии:

Резистивная (Resistive);

Инфракрасная (Infrared);

Емкостная (Capacitive);

Поверхностно-акустической волны (SAW).

Все указанные технологии имеют свои собственные отличительные черты, выгоды, преимущества и недостатки.

Резистивная технология сенсорных экранов

Резистивный сенсорный экран имеет многослойную структуру, состоящую из двух проводящих поверхностей, разделенных специальным изолирующим составом, распределенным по всей площади активной области экрана.

При касании наружного слоя, выполненного из тонкого прозрачного пластика, его внутренняя проводящая поверхность совмещается с проводящим слоем основной пластины (может быть сделана из стекла или полиэстера), играющей роль каркаса конструкции, благодаря чему происходит изменение сопротивления всей системы. Это изменение фиксируется микропроцессорным контроллером, передающим координаты точки касания управляющей программе компьютера.

Срабатывание происходит от нажатия пальцем или другим твердым предметом. Резистивные сенсорные экраны устойчивы к воздействию грязи, пыли, жира и многим жидкостям (таким как вода, ацетон, пиво, чай, кофе и др.), в том числе и некоторым химически едким.

Основные особенности резистивных сенсорных экранов (touchscreen):

превосходные показатели качества;

отличные технические характеристики;

ввод информации как стилусом, так и пальцем;

типичная прозрачность - 80%.

Резистивная продукция является самой привлекательной в ценовом отношении, так как стоит достаточно недорого. Также к преимуществам резистивных дисплеев можно отнести высокое разрешение, возможность использовать обычный металлический или пластиковый стилус, устойчивость к таким воздействиям, как пыль, грязь, вода и интенсивное освещение. Однако у данного вида продукции имеются и свои недостатки. К примеру, четкость изображения этого вида сенсорных дисплеев недостаточно высока. А сами дисплеи нуждаются в регулярной калибровке вследствие того, что начинается рассогласовывание места реакции системы с местом нажатия. Иногда возможен и такой вариант, что резистивный дисплей может реагировать синхронно более чем на одно нажатие. Помимо всего вышеперечисленного, такие дисплеи достаточно хрупкие, что в значительной мере ограничивает их использование.

Емкостная технология сенсорных экранов

Чувствительный элемент емкостного сенсорного экрана представляет собой стекло, на поверхность которого нанесено тонкое прозрачное проводящее покрытие. Вдоль краев стекла расположены узкие печатные электроды, равномерно распределяющие низковольтное электрическое поле по проводящему покрытию. Поверх проводящего слоя наносится защитное покрытие. При прикосновении к экрану образуется емкостная связь между пальцем и экраном, что вызывает импульс тока в точку контакта. Электрический ток из каждого угла экрана пропорционален расстоянию до точки касания, таким образом, контроллеру достаточно просто сравнить эти токи для определения места касания. Результат - прозрачный экран с малым временем отклика, обладающий высокой прочностью и долговечностью.

На сегодняшний день, сенсорный экран с технологией ThruTouch является уникальным и единственным сенсорным экраном, предназначенным для использования в уличных платежных терминалах или информационных киосках.

Данная технология первоначально была применена в таких моделях, как сотовые телефоны iPhone и LG Prada. При этом сенсор располагался под слоем минерального стекла, дававшего ему дополнительную защиту от царапин, а, следовательно, повышавшим его надежность. Электрические свойства проводников претерпевают изменение уже в момент приближения пальца к дисплею. Именно поэтому iPhone великолепно откликается даже на легкие касания. Проекционно-емкостные дисплеи позволяют в одно и то же время фиксировать несколько нажатий. К примеру, в iPhone для зумирования применяют двухпальцевые жесты.

iPhone, благодаря своей популярности, удалось стать прародителем характерного дизайна для большей части «сенсорных» телефонов.

Отличительной чертой стал элегантный моноблок с крупным сенсорным дисплеем и минимальным числом кнопок.

Экран iPhone отличается великолепным разрешением пикселей (320х480). Картинка на дисплее живая и яркая, с большим углом обзора и к тому же безупречным поведением на солнце. Подсветка экрана быстро меняется в зависимости от степени освещенности.

Дисплей iPhone также снабжен датчиками, реагирующими на движение, что дает возможность автоматически изменять его ориентацию при повороте телефона.

Стилус для iPhone не предусмотрен, к тому же устройство на него не реагирует. Однако удобство работы с дисплеем от этого никак не страдает.

iPhone удобен прежде всего для работы с Интернетом, поэтому большая часть фишек предназначена для работы в браузере. К ним можно отнести, к примеру, оптимизацию размеров интернет-страниц путем двойного нажатия.


Технология поверхностно-акустической волны

Данный принцип создания сенсорных экранов является технологичным и дорогостоящим. Он позволяет достичь точности при фиксировании действий пользователя за счет компенсации возможных погрешностей при определении экранных координат мощным математическим аппаратом программной надстройки. В углах такого экрана размещается специальный набор пьезоэлектрических элементов, на которые подается электрический сигнал частотой 5 МГц. Этот сигнал преобразуется в ультразвуковую акустическую волну, направляемую вдоль поверхности экрана, а сам экран представляется для программы управления сенсорными датчиками в виде цифровой матрицы, каждое значение которой соответствует определенной точке экранной поверхности.

В ограничивающую экран рамку вмонтированы так называемые отражатели, распространяющие ультразвуковую волну таким образом, что она охватывает все рабочее пространство сенсорного экрана. Специальные рефлекторы фокусируют ультразвук и направляют его на приемный датчик, который снова преобразует полученное им акустическое колебание в электрический сигнал. Даже легкое касание экрана в любой его точке вызывает активное поглощение волн, благодаря чему картина распространения ультразвука по его поверхности несколько меняется. Управляющая программа сравнивает принятый от датчиков изменившийся сигнал с хранящейся в памяти компьютера цифровой матрицей - картой экрана, и вычисляет исходя из имеющихся данных координату касания, причем значение координаты высчитывается независимо для вертикальной и горизонтальной оси.

Количество поглощенной волны преобразуется в третий параметр, определяющий силу нажатия пользователя на экран. Полученные таким образом данные передаются соответствующему программному комплексу, определяющему дальнейший алгоритм работы компьютера в ответ на действия пользователя.

Инфракрасная технология сенсорных экранов

В сравнении с предыдущей, инфракрасная технология обеспечивает высокий уровень прочности и прозрачности и менее восприимчива к факторам окружающей среды за счет возможности герметичной изоляции при монтировании на экран монитора. Вследствие этого используется в медицинских и производственных приложениях.

Вдоль границ сенсорного экрана, применяющего в своей работе принцип инфракрасных волн, устанавливаются специальные излучающие элементы, генерирующие направленные вдоль поверхности экрана световые волны инфракрасного диапазона, распределяющиеся в его рабочем пространстве наподобие координатной сетки. С другой стороны экрана смонтированы улавливающие элементы, принимающие волну и преобразующие ее в электрический сигнал. Если один из инфракрасных лучей перекрывается попавшим в его зону действия посторонним предметом, луч перестает поступать на приемный элемент, что тут же фиксируется микропроцессорным контроллером, и при этом вычисляется координата касания.

Примечательно, что инфракрасному сенсорному экрану все равно, какой именно предмет помещен в его рабочее пространство: нажатие может осуществляться пальцем, авторучкой, указкой и даже рукой в перчатке.

Сенсорно-сканирующие дисплеи

Из новинок в области сенсорных дисплеев заслуживает внимание новшество, разработанное компанией Sharp. Это сенсорный дисплей, позволяющий убрать ограничения, свойственные данной продукции, а также способный сканировать изображения. Новый тип дисплеев получил название «сенсорно-сканирующий дисплей».

В дисплее данного типа оптический сенсор добавлен в каждую точку, что дает возможность регистрировать изменения буквально до пикселя. Такая технология позволила осуществить сложный многоточечный порядок ввода в стиле iPhone, а также оборудовать устройство специальной сканирующей функцией. Для сканирования достаточно всего лишь приложить к экрану визитную карточку, которая будет сначала отсканирована, а затем распознана при помощи соответствующего программного обеспечения.

Помимо этого технология дает возможность производить дисплеи малой толщины – всего 1 мм. Это позволяет изготовить либо более тонкое устройство, либо дать дополнительное место для оборудования иными деталями.
Данное оптическое решение также позволяет применять специальные защитные слои, предохраняющие экран от царапин и иных повреждений. При этом сенсорные свойства дисплеев и качество изображения никак не страдают.

На сегодняшний день сенсорно-сканирующие дисплеи смогут использоваться в цифровых камерах и смартфонах. Однако будущие разработки будут проводиться с целью увеличить диагональ экрана до 12.1 дюйма (сейчас диагональ составляет 3.5 дюйма), что даст возможность применять данную технологию в ноутбуках.

Применение сенсорных технологий

Еще несколько лет назад сенсорные технологии были слабо распространены, сейчас можно сказать, что их развитие практически в любой сфере деятельности раскрывает новые возможности, ускоряет процессы обслуживания, упрощает взаимодействие человека с компьютером.

Применение сенсорных систем основано на принципе прикосновения человека к заинтересовавшему его объекту. Простота в обращении позволяет использовать сенсорные технологии большому кругу пользователей. Антивандальное исполнение экранов, защитные от царапин технологии уменьшают процент возможности механического повреждения.

Сенсорные мониторы - это один из типичных примеров применения сенсорных технологий. Мониторы бывают как настольного исполнения, так и промышленного - встраиваемые мониторы. В качестве примеров применения сенсорных мониторов (как настольных, так и встраиваемых вариантов) можно привести следующее:

Торговля

Оснащение торговой точки сенсорным оборудованием позволит повысить скорость обслуживания клиентов и при этом снизить риск ошибок. Работа с "сенсорным" интерфейсом практически не требует подготовки. Области применения сенсорных систем в торговле поистине многообразны. Чаще всего сенсорные мониторы и моноблоки используются как POS-терминалы. Сенсорный киоск может использоваться как терминал для электронного стола заказов, служить электронным путеводителем по торговому залу, либо применяться для показа мультимедиа-презентаций. Так же сенсорный интерфейс упрощает процесс оформления покупки и позволяет индивидуализировать его.

Игровые автоматы

Сенсорный интерфейс наиболее удобен для игровых машин, устанавливаемых в казино, барах, клубах. Посетителям, которые только приобщаются к такой технике, гораздо проще и удобнее использовать сенсорный экран.

Промышленность

Сенсорный экран максимально упрощает взаимодействие человека с компьютером. Отсутствие клавиатуры и мыши означает отсутствие дополнительных отвлекающих факторов, что крайне важно в рабочих условиях промышленного предприятия.

Финансовые учреждения

В финансовых учреждениях при работе с большими объемами разных данных часто приходится использовать многомониторные системы. Работа с клавиатурой и мышью в таком случае прилично сковывает действия оператора, затрудняет работу с интерфейсами. Сенсорные технологии позволяют выполнять те же операции за более короткое время

Медицина

В медицине, где используется крайне сложное оборудование, очень важно максимально упростить работу с технически сложными системами. В работе с диагностическим оборудованием скорость реакции и безошибочность действий часто могут оказываться в буквальном смысле жизненно важными.

Гостиницы и рестораны

Оперативность и безошибочность действий оператора в сфере обслуживания является одним из ключевых звеньев успеха компании, работающей в этом секторе. Сенсорный монитор и специально разработанный под него рабочий интерфейс способны значительно повысить скорость и точность работы менеджера. Качество обслуживания в этом случае возрастает, соответственно растет и удовлетворение качеством сервиса со стороны клиентов.

Службы безопасности

Быстрое удобное реагирование на любые сигналы системы безопасности, управление различными модулями комплекса.

Транспорт

При большом количестве людей в зданиях вокзалов и аэропортов, желающих узнать какую-то информацию, удобным способом удовлетворить их, не создавая лишних очередей является установка сенсорного аппарата легкого в обращении и антивандальном исполнении экранов.

Для монитора на столе. За размеры монитора считают размер его экрана по диагонали. Для ЭЛТ стандартными являются размеры 14", 15", 17", 19", 21", 23", 24" (" – обозначение дюйма.) Для ЖК-мониторов – 13", 14", 15", 17", 19". Любой компьютер неизбежно приносит вредит здоровью. Одним из наиболее опасных компонентов компьютера является монитор. Наиболее вредными для здоровья являются ЭЛТ-мониторы...

Продукт, который дает возможность изучения иностранных языков в совместной трехмерной окружающей среде в реальном времени. ICLE интегрирует самую последнюю технологию наушников с трехмерной средой, разработанную специально для обучения иностранным языкам в различных уровнях. ICLE использует Multimedia компьютеры, подключенные к локальной сети или к ISDN. Программная спецификация Обучение...

В любом порядке, и выбрать из них необходимые позже, во время монтажа, когда отобранные кадры перезаписываются на новую мастер-ленту. Тип монтажа зависит от имеющегося технического оборудования, например, сегодня Россия переходит на современные передовые технологии в области монтажа, компьютерной графики и видеосъемки. Продакшн студии, видеостудии, саундстуди работают на PC фирмы Apple IMC и...

Количество разнообразных электронных устройств, оснащенных сенсорными дисплеями, увеличивается с каждым годом. Однако не все сенсорные экраны одинаковы. В настоящее время существует несколько вариантов реализации таких решений. В этой статье мы рассмотрим особенности и сферу применения различных технологий, используемых для создания сенсорных дисплеев.

Возможно, в это трудно поверить, но история сенсорных дисплеев началась почти четыре десятилетия тому назад. В далеком 1971 году сотрудник Университета Кентукки Сэм Хёрст (Sam Hurst) сконструировал сенсорную панель, которая была запатентована под названием «илограф» (elograph). Для разработки и продвижения устройств подобного типа Сэм Хёрст основал компанию Elographics. В 1974 году ее сотрудникам удалось создать прототип дисплея, оснащенного прозрачной сенсорной панелью. В 1977 году компания Elographics получила патент на конструкцию пятипроводной резистивной сенсорной панели - решения, которое и спустя более трех десятков лет остается весьма популярным. Компания работает до сих пор, правда уже под другим названием: в 1994 году она была переименована в Elo TouchSystems, а впоследствии вошла в состав холдинга Tyco Electronics.

На этом мы завершим краткий исторический экскурс и перейдем к рассмотрению различных решений, позволяющих реализовать функцию сенсорного ввода.

Резистивная технология

Обзор открывает резистивная технология. По большому счету именно она способствовала нынешней популярности портативных электронных устройств с сенсорными экранами. Даже несмотря на появление более совершенных конструкций, резистивная технология до сих занимает лидирующие позиции на рынке сенсорных панелей. Согласно данным аналитического агентства DisplaySearch, по итогам 2009 года доля сенсорных панелей на базе резистивной технологии в количественном выражении составила 50% от общего объема мировых поставок.

В настоящее время существуют два основных варианта реализации резистивных сенсорных панелей - четырех­ и пятипроводные.

Сначала рассмотрим принцип работы резистивной панели на базе четырехпроводной технологии. Над стеклянной или пластиковой подложкой расположена тонкая, гибкая мембрана, изготовленная из прозрачного материала. Обращенные друг к другу поверхности мембраны и подложки имеют прозрачное покрытие, проводящее электрический ток. Соприкосновению мембраны с подложкой препятствуют миниатюрные изоляторы, находящиеся между ними. К подложке и мембране прикреплены пары металлических электродов, расположенные на противолежащих сторонах (рис. 1). При этом электроды мембраны размещены перпендикулярно электродам подложки.

Рис. 1. Схема устройства четырехпроводной резистивной панели

При нажатии на поверхность сенсорного экрана мембрана в этом месте соприкасается с подложкой, вследствие чего возникает электрический контакт между проводящими слоями (рис. 2). Считывание координат точки нажатия выполняется последовательно. Сначала один из электродов подложки подключается к источнику постоянного тока, а другой заземляется. Электроды мембраны соединяются накоротко (рис. 3), и контроллер измеряет напряжение на них, определяя таким образом одну из координат (в данном случае - горизонтальную). Затем ток подается на электроды мембраны, и контроллер измеряет напряжение на соединенных электродах подложки, фиксируя вторую координату.

Рис. 2. При нажатии мембрана прогибается и замыкается
с подложкой в точке касания

Рис. 3. Считывание горизонтальной (сверху)
и вертикальной координат точки нажатия
с четырехпроводной резистивной панели

В случае пятипроводной панели электроды устанавливаются на каждой из сторон подложки, а пятый подключается к мембране (рис. 4). При нажатии мембрана соприкасается с подложкой; контроллер поочередно подает постоянное напряжение на пары электродов, соответствующих горизонтальной и вертикальной оси (рис. 5). По величине напряжения на электроде, подключенном к мембране, контроллер определяет координаты точки нажатия.

Рис. 4. Схема устройства пятипроводной резистивной панели

Рис. 5. Электрическая схема считывания горизонтальной (сверху)
и вертикальной координат точки нажатия с пятипроводной резистивной панели

Существует также восьмипроводная технология (в этом случае электроды крепятся к каждой из четырех сторон подложки и мембраны), однако используется такое решение довольно редко вследствие более высокой стоимости.

Сенсорные панели на базе резистивной технологии имеют простое устройство и низкую себестоимость - именно этими факторами и обусловлена популярность подобных решений. Кроме того, резистивные панели реагируют исключительно на давление, оказываемое предметом на сенсорную поверхность. Благодаря этому управлять интерфейсом можно при помощи как пальцев (в том числе и в перчатках), так и разнообразных предметов - стилуса, спички и пр. Такие панели отличаются малой задержкой срабатывания (порядка 10 мс) и сохраняют работоспособность даже при наличии разного рода загрязнений на сенсорной поверхности. Отметим также, что возможно изготовление резистивных сенсорных панелей как с глянцевым, так и с матовым покрытием. Первые обеспечивают более высокую четкость изображения, но при этом сильно бликуют, а при нажатии на сенсорную поверхность пальцами к тому же быстро теряют опрятный вид. Матовое покрытие эффективно нейтрализует блики и на нем не так заметны отпечатки пальцев. Правда, изображение в этом случае выглядит менее четким и контрастным.

Если говорить о различиях четырех­ и пятипроводной технологий, то первая выигрывает по себестоимости, а вторая обеспечивает более высокий ресурс (до десятков миллионов нажатий в одной точке). Восьмипроводная технология обеспечивает более высокую точность определения координат точки нажатия, однако, как уже было сказано, производство таких панелей обходится гораздо дороже по сравнению с четырех­ и пятипроводными конструкциями.

Разумеется, у резистивных панелей есть и определенные недостатки. Они в большей степени, чем иные конструкции, подвержены механическим повреждениям - ведь для срабатывания необходимо приложить определенное усилие и здесь легко переборщить. Наиболее уязвимым элементом конструкции является гибкая мембрана, регулярно подвергающаяся деформациям. При нарушении целостности мембраны (появлении надрыва или пореза) панель выходит из строя.

Резистивные панели уступают ряду устройств по точности определения координат точки нажатия и к тому же требуют периодической перекалибровки. Даже лучшие образцы резистивных панелей имеют коэффициент светопропускания порядка 85%, снижая, таким образом, исходные показатели яркости и контрастности изображения. Вследствие наличия между экраном дисплея и наблюдателем нескольких поверхностей (подложка, мембрана и защитный слой), использование резистивной сенсорной панели неизбежно приводит к ухудшению четкости изображения (данный недостаток в большей степени присущ конструкциям с матовым покрытием).

До недавнего времени к недостаткам экранов на базе резистивной технологии относили невозможность восприятия нажатия в нескольких точках одновременно. Однако благодаря новейшим разработкам это ограничение удалось преодолеть. Например, продемонстрированные в ходе форума SID 2010 резистивные сенсорные панели компании Fujitsu Components America способны воспринимать до 32 нажатий в разных точках экрана одновременно.

В настоящее время сенсорные экраны на базе резистивной технологии широко применяются в КПК, мобильных телефонах, портативных медиаплеерах, POS-терминалах, а также в промышленном и медицинском оборудовании.

Емкостная технология

Уже довольно давно ученые выяснили, что с точки зрения электротехники человеческое тело является конденсатором, причем довольно большой емкости. Именно это свойство нашего тела используется в сенсорных экранах на базе емкостной или, как ее еще иногда называют, электростатической технологии.

Сенсорная панель данного типа изготавливается на прозрачной (стеклянной либо пластиковой) подложке. Внешняя поверхность пластины покрыта проводящим слоем, а в каждом из четырех ее углов закреплен электрод, подключенный к контроллеру (рис. 6). В процессе работы контроллер подает на электроды импульсы слабого переменного тока. Если прикоснуться пальцем к поверхности сенсорного экрана (подсоединить конденсатор), возникнет утечка тока. Величина тока утечки обратно пропорциональна расстоянию от точки нажатия до электрода. Сравнивая величины тока утечки через каждый из четырех электродов, контроллер рассчитывает координаты точки нажатия.

Рис. 6. Схема устройства емкостной панели

Вследствие отсутствия гибких мембран емкостные панели обладают более высокой надежностью по сравнению с резистивными (ресурс составляет несколько сотен миллионов нажатий). Кроме того, благодаря меньшему количеству оптических элементов емкостные панели обладают более высоким коэффициентом светопропускания (порядка 90%). Основным недостатком панелей этого типа является необходимость обеспечения электрического контакта между поверхностью и телом человека. Например, если нажать на такой экран стилусом из диэлектрического материала или же пальцем в перчатке, то работать он не будет. Кроме того, нормальная работа емкостной панели может быть нарушена при загрязнении поверхности веществами, проводящими электрический ток.

В настоящее время сенсорные панели на базе емкостной технологии используются в дисплеях информационных киосков и банкоматов, а также в промышленном оборудовании.

Проекционно-емкостная технология

На данный момент это решение занимает второе место в рейтинге популярности сенсорных технологий, уступая лишь резистивным панелям. Конструктивно панель на базе проекционно­емкостной технологии представляет собой две стеклянные пластины, между которыми находится сетка тонких электродов (рис. 7). В процессе работы контроллер посылает короткие импульсы по каждому из электродов. При нахождении пальца вблизи сенсорной поверхности возникает эффект, аналогичный подключению конденсатора большой емкости (роль которого в данном случае выполняет тело человека) к расположенным поблизости электродам. Измеряя величину падения напряжения (возникающего вследствие утечки тока через конденсатор), контроллер определяет координаты точки касания.

Рис. 7. Схема устройства проекционно-емкостной панели

Сенсорные панели на базе проекционно­емкостной технологии имеют целый ряд достоинств, которые способствовали значительному росту их популярности в последние годы. В частности, они долговечны, обладают высоким показателем светопропускания (порядка 90%), стойкостью к загрязнениям и механическим повреждениям рабочей поверхности, способны функционировать в широком диапазоне температур.

Проекционно-емкостная технология способна обеспечить очень высокую точность определения координат точки нажатия, однако здесь необходимо иметь в виду то, что данный параметр напрямую зависит от толщины защитного слоя. Чем он толще, тем меньше точность, и наоборот.

Кроме того, сенсорные панели такого типа позволяют воспринимать нажатия в нескольких точках экрана одновременно. В зависимости от настроек контроллера панель может реагировать не только на прикосновение, но и на поднесенный к рабочей поверхности палец. Соответственно возможно управление рукой в перчатке.

Основной недостаток проекционно­емкостных панелей - сложность электронных компонентов для обработки информации о нажатиях, а следовательно, довольно высокая стоимость производства. Кроме того, себестоимость проекционно­емкостных панелей заметно растет по мере увеличения размера и разрешающей способности экрана. Перечисленные факторы препятствуют распространению сенсорных панелей данного типа в недорогих устройствах, а также в аппаратах с экранами большого размера.

Проекционно-емкостные панели хорошо справляются с определением точечных нажатий, однако не лучшим образом подходят для реализации функций, связанных с перетаскиванием объектов графического интерфейса или рисованием на экране. Как и в случае резистивных панелей, устройства данного типа нуждаются в периодической перекалибровке.

В настоящее время сенсорные панели на базе проекционно­емкостной технологии используются в сотовых телефонах, цифровых медиапле-ерах, информационных киосках и тачпэдах (touchpad) портативных ПК. Популярность этого решения быстро растет. Так, согласно данным агентства DisplaySearch, в минувшем году доля сенсорных панелей на базе проекционно­емкостной технологии составила 31% от общего количества поставленных изделий.

Оптические технологии

Отдельную группу сенсорных экранов составляют устройства на базе оптических технологий. Популярность подобных решений пока невысока: по результатам прошлого года доля оптических сенсорных панелей составила всего 3% от общего объема мировых поставок. Впрочем, потенциал подобных устройств раскрыт еще не до конца.

ИК-сенсор с массивом неподвижных оптопар

Принцип работы данного решения довольно прост. В модуле, обрамляющем экран, с двух сторон расположены линейки ИК-светодиодов с фокусирующими линзами, а на противоположных сторонах - линейки фотодиодов либо фототранзисторов (рис. 8). При включении светодиодов над поверхностью экрана формируется невидимая сетка, образованная ИК-лучами. Когда какой­либо предмет приближается к поверхности экрана, он перекрывает пересекающиеся в данной точке лучи. Отсутствие луча фиксируется светочувствительными элементами оптопар, по изменению состояния которых контроллер определяет координаты точки касания.

Рис. 8. Схема устройства ИК-сенсора с массивом неподвижных оптопар

Подобные сенсоры применяются преимущественно в дисплейных панелях с большим размером экрана. Дело в том, что разрешающая способность таких сенсоров ограничена физическими размерами элементов оптопар и параметрами фокусирующих линз. Как правило, шаг оптической сетки составляет порядка 2-3 мм, и даже при установке на 32-дюймовый дисплей разрешение сенсора подобной конструкции не превысит 320x240 точек.

Однако у ИК-сенсоров с массивом неподвижных оптопар есть и неоспоримые преимущества. Поскольку между экраном дисплея и наблюдателем отсутствуют какие­либо помехи (стекло, дополнительные проводники и т.п.), установка подобного сенсора не влияет на такие показатели, как яркость, контрастность, четкость и точность цветопередачи. Кроме того, сенсор подобного типа можно изготовить в виде съемного модуля, прикрепляемого к любой дисплейной панели с экраном соответствующего размера (в отличие от емкостных и резистивных панелей, которые, как правило, объединены в единый модуль с дисплеем).

По вполне понятным причинам ИК-сенсор с неподвижными элементами не требует калибровки. Кроме того, для управления элементами интерфейса можно использовать пальцы и любые подходящие по размеру предметы.

Из недостатков можно отметить довольно высокую стоимость подобных устройств, а также необходимость регулярно проводить чистку оптических элементов от пыли и грязи для обеспечения стабильности их работы. Нормальному функционированию сенсорного экрана такого типа могут воспрепятствовать прямые солнечные лучи, попадающие на фотоэлементы.

Есть и еще один нюанс. У многих моделей ИК-сенсоров плоскость, в которой лежат элементы оптопар, находится на некотором расстоянии от поверхности экрана. Как следствие, при использовании предмета, расположенного не строго перпендикулярно относительно плоскости экрана, возникают ошибки в определении координат.

В настоящее время ЖК- и плазменные панели с ИК-сенсорами используются в презентационном оборудовании, в образовательных учреждениях, ситуационных центрах и т.д.

ИК-сенсор с механизмом развертки луча

Развитием идеи бесконтактной регистрации прикосновений посредством ИК-лучей стала ИК-технология с подвижным лучом. Вместо массива оптопар используется один источник ИК-излучения (светодиод либо полупроводниковый лазер) и механизм развертки, который обеспечивает движение луча, с высокой скоростью сканирующего рабочую поверхность. При отсутствии препятствия луч рассеивается. Если же на пути луча встречается какое­либо препятствие, то луч отражается от него и улавливается фотодиодом. По изменению состояния фотодиода контроллер фиксирует касание в соответствующей точке.

В отличие от ИК-сенсоров с неподвижными оптопарами, описанную конструкцию можно реализовать в виде очень компактного модуля - что, в свою очередь, позволяет без проблем применять ее в портативных устройствах. Уникальной особенностью данной технологии является возможность использования ее с проецируемыми изображениями, причем размер рабочей области может варьироваться в довольно широких пределах. Благодаря отсутствию помех работа оптического сенсора не влияет на характеристики изображения. Кроме того, себестоимость таких сенсоров невелика.

Из недостатков отметим не очень высокую разрешающую способность, ограниченные возможности по распознаванию нескольких прикосновений одновременно и довольно большую погрешность определения координат точки касания по краям экрана, где угол падения луча минимален.

Первыми коммерческими устройствами, в которых использовались оптические сенсоры с механизмом развертки, были виртуальные клавиатуры (рис. 9). Устройство размером с зажигалку позволяет заменить аппаратную клавиатуру при работе с портативным или карманным ПК. В последнее время повышенный интерес к подобным сенсорам проявляют разработчики мультимедиапроекторов, а также портативных устройств со встроенными проекторами (рис. 10).

Рис. 9. Беспроводная виртуальная клавиатура для КПК
и мобильных телефонов

Рис. 10. ИК-сенcор с механизмом развертки
луча позволяет реализовать функцию сенсорного ввода
для проецируемых изображений

ИК-сенсор NextWindow

Данная технология была разработана компанией NextWindow и применяется в выпускаемых ею сенсорных панелях. В отличие от пары описанных выше решений, где сенсорная поверхность является виртуальной, технология NextWindow предусматривает использование в этом качестве физического объекта - стеклянной либо пластиковой пластины. С трех сторон в торцах пластины установлены источники ИК-излучения (линейки светодиодов), а в двух верхних углах находятся оптические сенсоры, работающие в ИК-диапазоне (рис. 11).

Рис. 11. Схема устройства ИК-сенсора NextWindow

При касании поверхности пальцем или каким­либо предметом меняется картина распространения ИК-излучения. Эти изменения фиксируются оптическими сенсорами, по изменению показаний которых контроллер рассчитывает координаты точки касания.

Достоинствами данного решения являются высокий коэффициент светопропускания панели (более 92%), возможность регистрации прикосновений в двух точках одновременно и высокая разрешающая способность. Сенсоры этого типа отличаются высокой стабильностью работы и не требуют периодической калибровки в процессе эксплуатации.

Из недостатков можно отметить довольно сложную конструкцию контроллера и соответственно не самую низкую себестоимость подобных устройств.

Сенсорные панели данной конструкции наилучшим образом подходят для оснащения дисплеев с большим размером экрана (от 20 дюймов по диагонали и более). На базе технологии NextWindow выпускаются как дисплейные панели с интегрированным сенсорным экраном, так и съемные модули.

Оптические сенсоры на базе видеокамер

В устройствах, изображение на экране которых формируется методом обратной проекции, может быть использован оптический сенсор на базе цифровой видеокамеры. В простейшем случае применяется одна видеокамера, работающая в ИК-диапазоне (рис. 12). Изображение на экране в данном случае не является помехой, поскольку оно проецируется в видимом диапазоне и камера его просто воспринимает.

Рис. 12. Схема устройства оптического сенсора с видеокамерой в устройствах,
изображение на экране которых формируется методом обратной проекции

Внутренняя поверхность экрана подсвечивается ИК-лучами. При отсутствии каких­либо предметов на поверхности экрана ИК-лучи беспрепятственно проходят сквозь стекло. В случае касания поверхности лучи отражаются от появившегося препятствия и видеокамера фиксирует пятно (или несколько пятен) на однородном фоне. Полученное изображение обрабатывается программным обеспечением, которое вычисляет координаты точек касания.

В составе такого сенсора может быть и несколько видеокамер - это позволяет повысить его надежность и реализовать дополнительные возможности. Например, в устройстве Microsoft Surface (рис. 13) для обслуживания сенсора подобного типа установлено сразу пять видеокамер. Помимо регистрации прикосновений и жестов они обеспечивают работу системы распознавания объектов. Для этого на нижнюю сторону предметов, используемых с данным устройством, наносятся миниатюрные черно­белые метки, напоминающие обозначения цифр на костяшках домино. По этим меткам программное обеспечение может определить тип объекта и автоматически выполнить ассоциированное с ним действие - открыть документ с описанием, запустить какое­либо приложение и т.д.

Рис. 13. В устройстве Microsoft Surface функция
сенсорного ввода реализована при помощи видеокамер,
установленных внутри корпуса

Оптический сенсор с видеокамерой не оказывает какого-либо влияния на качество изображения на экране. В числе других достоинств данного решения - возможность обработки нескольких касаний одновременно; использование как пальцев, так и различных предметов (причем в любых сочетаниях) для работы с графическим интерфейсом. Разрешающая способность такого сенсора может варьироваться в широких пределах в зависимости от разрешения применяемой видеокамеры и оптической системы. Кроме того, один и тот же сенсор с минимальной модернизацией можно использовать для работы с экранами различного размера.

Из­за высокой стоимости и больших габаритов оптические сенсоры на базе видеокамеры непригодны для применения в портативных устройствах. Система требует тщательной калибровки после монтажа и регулярной подстройки для обеспечения приемлемой точности.

Как уже было упомянуто, оптические сенсоры на базе видеокамеры пригодны для использования исключительно в дисплеях с обратной проекцией изображения, и это в значительной степени ограничивает сферу их применения. В настоящее время данный класс устройств является весьма немногочисленным: спрос на проекционные телевизоры стремительно сокращается, а аппараты вроде Microsoft Surface и вовсе производятся в микроскопическом количестве.

Технологии на базе свойств акустических волн

Пока что ни одна из технологий, использующих для реализации функции сенсорного ввода свойства акустических волн, не получила широкого распространения. Тем не менее подобные решения интересны не только оригинальным принципом работы, но и рядом важных достоинств.

Технология поверхностно-акустических волн

Как следует из названия, работа данного решения базируется на особенностях распространения поверхностно-акустических волн (ПАВ). Сенсорная панель на базе ПАВ представляет собой стеклянную пластину, которая монтируется перед экраном дисплея с небольшим зазором. В углах пластины установлены пьезоэлектрические преобразователи (ПЭП) и принимающие датчики, по краям - отражатели (рис. 14). В процессе работы контроллер подает высокочастотный электрический сигнал на пьезоэлектрические преобразователи, которые, в свою очередь, возбуждают в стеклянной пластине поверхностно-акустические волны ультразвукового диапазона (частотой порядка нескольких мегагерц). Эти волны равномерно распределяются отражателями по толще пластины и затем улавливаются принимающими датчиками, которые преобразуют их в электрический сигнал, считываемый контроллером. При прикосновении к сенсорной поверхности часть энергии поверхностно-акустических волн поглощается (палец или иной предмет в данном случае выступает в роли демпфера, препятствующего свободному распространению волн). По изменению сигналов, считываемых принимающими датчиками, контроллер определяет координаты точки касания.

Рис. 14. Схема устройства сенсорной панели на базе технологии ПАВ

Сенсорные панели на базе технологии ПАВ отличаются надежностью (они выдерживают десятки миллионов нажатий в одной точке), высоким показателем светопропускания (более 90%) и восприимчивостью к нажатиям, выполненным как пальцами, так и различными предметами. В некоторых вариантах реализации данная технология позволяет определять не только координаты, но и силу нажатия.

Из недостатков сенсорных панелей этого типа необходимо отметить чувствительность к загрязнению рабочей поверхности (грязь влияет на распространение акустических волн) и не очень высокую точность определения координат точки нажатия. Также возможны нарушения в работе сенсорной панели в условиях сильного шума и вибраций, что в значительной мере ограничивает возможности по использованию устройств данного типа вне помещений.

Существует несколько вариантов реализации сенсорных панелей на базе ПАВ - IntelliTouch, SecureTouch, iTouch и др. Основной сферой применения сенсорных панелей на базе технологии ПАВ в настоящее время являются информационные киоски, терминалы и т.д. В силу технических особенностей данного решения его целесообразно использовать в дисплеях с большим размером экрана (19 дюймов и более).

Технология распознавания акустических импульсов

Технология распознавания акустических импульсов (Acoustic Pulse Recognition, APR), созданная специалистами компании Elo TouchSystems, является дальнейшим развитием идеи, использованной в панелях на базе ПАВ. Впрочем, принцип работы сенсорных панелей на базе технологии APR существенно отличается от устройств на базе ПАВ.

Сенсорная поверхность представляет собой стеклянную пластину. На ее сторонах установлены четыре пьезоэлектрических преобразователя, конвертирующих распространяющиеся по толще стекла звуковые волны в электрический сигнал (рис. 15).

Рис. 15. Схема устройства сенсорной панели на базе технологии APR

Принцип работы панели APR основан на том, что звук, возникающий при прикосновении к каждой из точек сенсорной поверхности, уникален. При прикосновении к сенсорной поверхности возникает звуковой импульс, распространяющийся по стеклянной панели. Достигнув края панели, импульс воздействует на ПЭП, который преобразует его в электрический сигнал и передает в контроллер. Последний сравнивает поступающие с датчиков сигналы с сохраненными в памяти эталонными сигналами, зафиксированными при прикосновениях к различным точкам панели. При несовпадении звуковой картины с хранящимися в памяти эталонами контроллер не регистрирует нажатие - таким образом реализована эффективная система фильтрации внешних шумов и вибраций.

Сенсорные панели на базе технологии APR обеспечивают более высокую (по сравнению с устройствами на базе ПАВ) точность определения координат точки касания и гораздо меньше подвержены влиянию посторонних шумов и вибраций. Нажатия можно производить как пальцами, так и различными предметами. Такие панели обладают высоким показателем светопропускания (более 90%) и сохраняют работоспособность при наличии царапин и загрязнений на сенсорной поверхности. Сенсорные панели на базе технологии APR обеспечивают высокую стабильность работы и не требуют перекалибровки в процессе эксплуатации. Данное решение отличается хорошей масштабируемостью: его можно использовать в дисплейных панелях как с малым, так и с большим размером экрана.

Сегодня основной сферой применения технологии APR являются цифровые киоски и POS-терминалы. Поставки коммерческих решений с сенсорными дисплеями на базе технологии APR начались сравнительно недавно - в конце 2006 года.

Ультразвуковая технология

Для работы с сенсорным экраном этого типа используется специальное перо, в котором размещены генератор, излучатель ультразвуковых волн и миниатюрный источник питания. На рамке дисплея вблизи от верхних углов экрана смонтированы два датчика, реагирующих на ультразвук (рис. 16). При прикосновении наконечника пера к поверхности экрана срабатывает выключатель, и перо начинает излучать ультразвуковые волны. Контроллер фиксирует время срабатывания каждого из датчиков и по разнице этих значений вычисляет координаты точки касания.

Рис. 16. Схема устройства дисплея с ультразвуковым сенсором

Основными достоинствами этого решения являются простота реализации (не требуется вносить изменения в конструкцию дисплейной панели), низкая себестоимость, а также отсутствие помех, влияющих на качество изображения. Подобная конструкция обладает хорошей масштабируемостью: сенсор такого типа можно использовать с экранами различных размеров (требуется лишь внесение незначительных изменений в программу контроллера).

Основным недостатком является необходимость применения специального пера. Кроме того, данное решение обеспечивает не очень высокую точность определения координат точки нажатия (±0,5 мм) и требует дополнительного пространства для размещения датчиков на рамке вокруг экрана. Таким образом, ультразвуковой сенсор практически непригоден для использования в портативных устройствах.

В качестве примера серийного устройства, оснащенного ультразвуковой системой сенсорного ввода, можно привести выпущенный в начале 2006 года 17-дюймовый ЖК-монитор Samsung SyncMaster 720TD (рис. 17). Датчики сенсора в этой модели были выполнены в виде шайб цилиндрической формы, расположенных в верхних углах рамки монитора.

Рис. 17. ЖК-монитор SyncMaster 720TD оснащен системой
сенсорного ввода на базе ультразвуковой технологии

Технология электромагнитного резонанса

В заключение стоит упомянуть технологию электромагнитного резонанса, разработанную компанией Wacom для использования в графических планшетах (дигитайзерах). В 1998 году в продуктовой линейке компании появилась первая модель ЖК-дисплея со встроенным графическим планшетом - Cintiq 18sx. В настоящее время компания Wacom выпускает две серии дисплеев с сенсорным экраном - Cintiq и PL (рис. 18).

Рис. 18. ЖК-дисплей Wacom серии Cintiq, оснащенный
встроенным графическим планшетом

Сенсорные панели, созданные на базе технологии электромагнитного резонанса, обеспечивают очень высокую точность позиционирования, а также позволяют получать дополнительную информацию от встроенных датчиков пера - таким образом можно фиксировать силу нажатия, угол наклона, тип наконечника и пр.

Данная конструкция позволяет отслеживать местоположение пера даже в том случае, когда его наконечник находится на расстоянии 1-2 см от рабочей поверхности. Благодаря этому сенсорную панель можно установить под модулем ЖК-дисплея - не ухудшая, таким образом, оптические характеристики дисплея.

Увы, есть и целый ряд недостатков. Сенсорные панели на базе технологии электромагнитного резонанса работают только со специальным пером и требуют периодической калибровки в процессе эксплуатации. Кроме того, в силу сложности конструкции такие изделия довольно дороги в производстве, причем цена значительно возрастает по мере увеличения размера экрана.

Сенсорные панели на базе данной технологии потребляют много электроэнергии и являются источником электромагнитных помех, которые могут нарушить нормальную работу расположенного поблизости беспроводного оборудования (мобильных телефонов, точек доступа и пр.).

Судя по всему, в ближайшие годы технология электромагнитного резонанса так и останется решением, ориентированным главным образом на немногочисленный сегмент дорогих сенсорных дисплеев, используемых для работы с профессиональными приложениями (графическими редакторами, системами 3D-моделирования, САПР и т.д.).

Используемые материалы:

Стекло, листовой полиэстер, проводящее покрытие.

Принцип действия :

  • Сенсорные элементы, заданные шаблоном, расположены на обратной стороне сенсорной подложки.
  • Измеряется уровень сигнала на каждом элементе.
  • Касание определяется путем сравнения уровней сигналов между смежными элементами.

Преимущества:

  • Может быть ламинирована или химически обработана для дополнительной защиты от повреждений.
  • Экраны в основном ламинируют для предотвращения разбивания на осколки.
  • Касания могут осуществляться пальцем, пальцем в перчатке или проводящим стилусом.
  • Светопередача 85%-90%.
  • Определение одновременного касания в 3-х и более точках.

Недостатки:

  • Более сложная электроника и конструкция экрана по сравнению с другими технологиями и, как следствие, более высокая стоимость.
  • Не поддерживает работу с непроводящими стилусами.

Инфракрасная Infrared (Grid) (IR)

Используемые материалы:

Стеклянная или акриловая подложка, рамка по периметру стекла, светодиодная матрица

Принцип действия:

Светодиоды создают сетку инфракрасных световых лучей по осям X и Y на поверхности экрана. Фотоприемники улавливают эти лучи на противоположной стороне экрана. Касание определяется когда палец или стилус блокирует луч и не позволяет ему достичь фотоприемников. Контроллер постоянно сканирует по осям X и Y и в момент касания определяет блокировку и вычисляет координату касания методом триангуляции.

Преимущества:

  • На работу экрана не влияют царапины и износ поверхности.
  • Касания осуществляются пальцем, рукой в перчатке, или толстым стилусом.
  • Светопередача 90% - 92%

Недостатки:

  • Крупные загрязнения, пролитые жидкости или какие-то препятствия на поверхности экрана могут приводить к ложным срабатываниям и создавать мертвые зоны.
  • Касания происходят слегка над поверхностью экрана, что может привести к непреднамеренному срабатыванию.
  • Требуется рамка защищающая светодиоды и фотоприемники.

Оптическая

Используемые матреиалы:

Стеклянная подложка, оптические сенсоры линейного сканирования, световые шины.

Принцип действия:

Миниатюрные камеры расположены в 2-ух верхних углах подложки. Подсвеченные или отражающие границы 3-х противоположных сторон проецируют однородное поле инфракрасного света немного выше поверхности стекла. Касание распознается благодаря перекрыванию пальцем или другим объектом светового потока от камер. Контроллер обрабатывает оптическую информацию и вычисляет координаты Х и Y.

Преимущества:

  • На работу экрана не влияют царапины
  • Нажатие осуществляется пальцем, рукой в перчатке или стилусом.
  • Масштабируемость
  • Светопередача более 90

Недостатки:

  • Пролитая жидкость или загрязнения поверхности могут вызвать ложные срабатывания или привести к неработоспособности экрана.
  • Для данного типа технологии требуется рамка для защиты камер в углах экрана
  • Защитная рамка приводит к увеличению толщины сенсорного экрана на 3,5 мм.
  • Нажатие срабатывает чуть ранее реального касания поверхности
  • Определение 2-ух точек касания осуществляется 2-я камерами, а 3-х и более точек касания - 4 камерами.

ПАВ (технология на поверхностно-акустических волнах)

Используемые материалы:

Стекло, пьезоэлектрические преобразователи

Принцип действия:

  • Пьезоэлектрические датчики установленные по углам стекла генерируют акустические волны по поверхности стеклянной подложки по осям Х и Y.
  • Акустические волны отражаются от специальных насечек на стекле, перенаправляя энергию в пьезоэлектрические приемники.
  • Касание поверхности сенсорного экрана вызывает уменьшение части волны в прямой зависимости от координат касания.
  • Касание определяется по времени задержки от переданного импульса до места затухания поверхностной волны.

Преимущества:

  • Касания могут осуществляться пальцем, некоторыми перчатками или мягким проводящим стилусом.
  • Светопередача более 90%.

Недостатки:

  • Жидкости или крупные загрязнения (пыль, грязь) могут вызвать ложные срабатывания или мертвые зоны на экране.
  • Требуется надежная защита от грязи и воды, что усложняет процесс сборки устройств
  • Широкий бордюр не позволяет интегрировать экран во многие модели мониторов.
  • Определяется только одна точка касания - отсутствие мультитач

Поверхностно-емкостная (ClearTek)

Используемые материалы:

Стеклянная подложка, Покрытие из прозрачного метталического оксида Glass substrate, transparent metal oxide coating

Принцип действия:

  • Напряжение прилагается к углам сенсорного экрана.
  • Электроды по периметру сенсорного экрана распределяют напряжение для создания однородного электрического поля через проводящую поверхность экрана.
  • В момент касания часть тока снимается с поверхности экрана и измеряется контроллером.
  • Относительная величина тока обратно пропорциональна растоянию от точки касания до углов экрана.
  • Пропорция токов от 4-х углов позволяет рассчитать координаты X и Y точки касания.

Преимущества:

  • Устойчивость к загрязнениям (грязь, пыль, жир и т.п) и жидкостям на поверхности экрана.
  • Срабатывание даже при легком касании экрана.
  • Самой быстрый отклик на нажатие среди сенсорных технологий.
  • Светопередача 88% - 92%.

Недостатки:

  • Поддерживает только касания пальцем (без перчаток) или стилусом подключенным к котроллеру.
  • Сильные царапины могут повлять на работоспособность экрана.
  • Определяется только одно касание - отсутствие мультитач.