Компиляция данных. диапазон возможных значений данных из набора. Этапы решения задачи на компьютере

Компьютеров, оснащённых векторным процессором .

  • Гибкий . Составлен по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью компилятора компиляторов.
  • Диалоговый . См.: диалоговый транслятор.
  • Инкрементальный . Повторно транслирует фрагменты программы и дополнения к ней без перекомпиляции всей программы.
  • Интерпретирующий (пошаговый) . Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.
  • Компилятор компиляторов . Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
  • Отладочный . Устраняет отдельные виды синтаксических ошибок.
  • Резидентный . Постоянно находится в основной памяти и доступен для повторного использования многими задачами.
  • Самокомпилируемый . Написан на том же языке, с которого осуществляется трансляция.
  • Универсальный . Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.
  • Виды компиляции

    • Пакетная . Компиляция нескольких исходных модулей в одном пункте задания.
    • Построчная . То же, что и интерпретация .
    • Условная . Компиляция, при которой транслируемый текст зависит от условий, заданных в исходной программе. Так, в зависимости от значения некоторой константы, можно включать или выключать трансляцию части текста программы.

    Основы

    Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код , который может быть непосредственно выполнен центральным процессором . Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы , поскольку использует предоставляемые ею возможности (системные вызовы , библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной .

    Некоторые компиляторы (например, низкоуровневом языке. Такой язык - байт-код - также можно считать языком машинных команд, поскольку он подлежит интерпретации виртуальной машиной . Например, для языка Java это JVM (язык виртуальной машины Java), или так называемый байт-код Java (вслед за ним все промежуточные низкоуровневые языки стали называть байт-кодами). Для языков программирования на платформе .NET Framework ( , Managed C++, Visual Basic .NET и другие) - это MSIL (Microsoft Intermediate Language).

    Программа на байт-коде подлежит интерпретации виртуальной машиной , либо ещё одной компиляции уже в машинный код непосредственно перед исполнением. Последнее называется «Just-In-Time компиляция» (MSIL-код компилируется в код целевой машины также JIT-компилятором, а библиотеки .NET Framework компилируются заранее).

    Для каждой целевой машины (Apple и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы , позволяющие на одной машине и в среде одной ОС получать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут быть оптимизированы под разные типы процессоров из одного семейства (путём использования специфичных для этих процессоров инструкций). Например, код, скомпилированный под процессоры семейства MMX, SSE2.

    Также существуют компиляторы, переводящие программу с языка высокого уровня на язык ассемблера .

    Существуют программы, которые решают обратную задачу - перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а программы - декомпиляторами . Но поскольку компиляция - это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах - например, существует довольно надёжный декомпилятор для Flash . Сходным процессом является дизассемблирование машинного кода в код на языке ассемблера, который всегда выполняется успешно. Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически однозначное соответствие.

    Структура компилятора

    Процесс компиляции состоит из следующих этапов:

    1. Лексический анализ . На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем .
    2. Синтаксический (грамматический) анализ . Последовательность лексем преобразуется в дерево разбора.
    3. Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) - например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.
    4. Оптимизация . Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах - например, над промежуточным кодом или над конечным машинным кодом.
    5. Генерация кода . Из промежуточного представления порождается код на целевом языке.

    В конкретных реализациях компиляторов эти этапы могут быть раздельны или совмещены в том или ином виде.

    Трансляция и компоновка

    Важной исторической особенностью компилятора, отражённой в его названии (англ. compile - собирать вместе, составлять), являлось то, что он мог производить и компоновку (то есть содержал две части - транслятор и компоновщик). Это связано с тем, что раздельная компиляция и компоновка как отдельная стадия сборки выделились значительно позже появления компиляторов, и многие популярные компиляторы (например, GCC) до сих пор физически объединены со своими компоновщиками. В связи с этим, вместо термина «компилятор» иногда используют термин «транслятор» как его синоним : либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один).

    Примечания

    См. также

    Реализации компиляторов
    • Sun Studio - компиляторы C, C++ и Fortran от Sun Microsystems Inc.
    • Open Watcom - свободное продолжение компиляторов Watcom C/C++/Fortran.
    • ICC AVR

    Литература

    • Альфред В. Ахо, Моника С. Лам, Рави Сети, Джеффри Д. Ульман. Компиляторы: принципы, технологии и инструментарий = Compilers: Principles, Techniques, and Tools. - 2-е изд. - М.: Вильямс , 2008. - ISBN 978-5-8459-1349-4
    • Робин Хантер. Основные концепции компиляторов = The Essence of Compilers. - М.: Вильямс , 2002. - С. 256. - ISBN 0-13-727835-7
    • Хантер Р. Проектирование и конструирование компиляторов / Пер. с англ. С. М. Круговой. - М.: Финансы и статистика, 1984. - 232 с.
    • Д. Креншоу. Давайте создадим компилятор! .

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Компиляция (программирование)" в других словарях:

      Компиляция: В Викисловаре есть статья «компиляция» Компиляция (литература) (лат. … Википедия

      В информатике, препроцессор это компьютерная программа, принимающая данные на входе, и выдающая данные, предназначенные для входа другой программы, например, такой как компилятор. О данных на выходе препроцессора говорят, что они находятся в… … Википедия

      Эта статья во многом или полностью опирается на неавторитетные источники. Информация из таких источников не соответствует требованию проверяемости представленной информации, и такие ссылки не показывают значимость темы статьи. Статью можно… … Википедия

      Just in time compilation (JIT, компиляция «на лету»), dynamic translation (динамическая компиляция) технология увеличения производительности программных систем, использующих байт код, путём компиляции байт кода в машинный код… … Википедия

      Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. Условные обозначения … Википедия

      Python Класс языка: функциональный, объектно ориентированный, императивный, аспектно ориентированный Тип исполнения: интерпретация байт кода, компиляция в MSIL, компиляция в байт код Java Появился в: 1990 г … Википедия

      ГОСТ 19781-90: Обеспечение систем обработки информации программное. Термины и определения - Терминология ГОСТ 19781 90: Обеспечение систем обработки информации программное. Термины и определения оригинал документа: 9. Абсолютная программа Non relocatable program Программа на машинном языке, выполнение которой зависит от ее… … Словарь-справочник терминов нормативно-технической документации

    Если вы только приступили к изучению программирования или интересуетесь данным вопросом, то вы наверняка сталкивались с таким таинственным словом, как «компилятор». Одним своим видом это страшное понятие способно отпугнуть пользователей. В данном обзоре мы попытаемся разобраться, действительно ли все так ужасно на самом деле.

    Компилятор: определение и история возникновения

    Если говорить простыми словами, то под компилятором сегодня имеется в виду программа, которая преобразует текст программы, написанной пользователем, в определенную форму, пригодную для выполнения на вычислительной машине. Такие программы появились одновременно с зарождением первых языков программирования. Это произошло еще в конце 50-х годов. Получается, что история, связанная с языками программирования и компиляторами, насчитывает уже более 60 лет. Данное направление компьютерной науки, несмотря на столь серьезный срок, нельзя назвать устоявшимся или устаревшим. Наоборот, с ходом времени, появлением новых задач и отраслей, для решения которых используются персональные компьютеры, появляется необходимость в разработке новых, более удобных языков программирования. Для этих языков соответственно и требуются компиляторы. Свои разработки существуют для каждой платформы.

    Компилятор: принцип работы

    Исходный текст, созданный на языке высокого уровня разработчиком, должен быть преобразован в программу, написанную на специальном машинном языке. Этот код и называют исполняемой программой. Исполняемую программу можно устанавливать и запускать на любом персональном компьютере, не делая при этом никаких преобразований.

    Компиляторы по традиции являются одной из основных вещей в информатике, наряду с базами данных и операционными системами. Что же собой представляет компилятор? Это в каком-то смысле базис современной компьютерной науки. Сама тема создания таких программ с другой точки зрения подразумевает большое количество технологических и теоретических аспектов, связанных с программированием. Как полагают многие разработчики, данная тема вообще является наиболее привлекательной в информатике. При разработке программы, решающей определенную задачу, программист пишет ее на специальном языке программирования. В процессе разработки он использует термины, которые близки именно к той области, с которой ему приходится иметь дело. Компьютер совершенно не понимает, что человек от него хочет. Он может разобраться только в простых вещах, таких как переменные, регистры, ячейки, постоянная и временная память. Что же собой представляет компилятор? Это специальная программа, основная задача которой заключается в переводе понятий, близких к предметной области программиста, в понятия, которыми может манипулировать персональный компьютер. Именно эту задачу выполняет компилятор для любого языка программирования. При появлении нового языка появляется необходимость в переводе написанного на нем кода в вид, который сможет понять компьютер. В противном случае, код не будет выполнен. Всегда имеется семантический зазор между понятиями человека и персонального компьютера. Компиляторы языка программирования предназначены как раз для его преодоления.

    Создатели компиляторов сталкиваются со множеством различных проблем. Это и научные проблемы, которые связаны с правильным отображением понятий в прикладной области, и технологические, и инженерные проблемы, связанные с реализацией отображения. При создании компилятора приходится выполнять множество разнородных подзадач. Это очень сложная отрасль, которой программисты посвящают всю свою жизнь.

    Компилятор и класс

    Многие из вас наверняка слышали о таких языках программирования, как C++ и C. Это одни из наиболее распространенных и популярных языков. Такие серьезные языки программирования содержат мощные понятия, которые удобны для отображения понятий прикладных областей. Там, к примеру, присутствует такое понятие, как классы и функции. Они являются основополагающими для многих языков программирования, но для C++ они особенно характерны. Программисту намного удобнее будет создавать модели при помощи таких понятий. Компилятор C для любой операционной системы дает возможность отобразить такие высокоуровневые вещи в понятной для компьютера форме. Тогда компьютер легко сможет ими манипулировать. Любая вычислительная машина, какой бы сложной она не была, оперирует простыми понятиями. Однако понятие класса можно назвать трудным, поскольку с его помощью удобно отражать многие объекты реальной жизни. Задача компилятора заключается в том, чтобы превращать сложные понятия в примитивные.

    Разработка компиляторов

    В последнее время можно проследить четкую тенденцию, связанную с тем, что любая крупная компания в сфере информационных технологий выпускает собственный язык программирования, который затем продвигается в массы. Для каждого языка программирования требуется свой собственный компилятор. Как правило, их создают вместе с языками. Однако, существует большое количество фирм и самостоятельных программистов, которые хотят иметь собственные компиляторы для тех или иных языков, или же разрабатывают собственные языки программирования и соответственно компиляторы к ним. Можно с полной уверенность сказать, что программист, который решил посвятить свою жизнь данной сфере, без работы точно не останется. Теперь вам должно быть более-менее понятно, что собой представляет компилятор. Это своеобразная программа-переводчик, которая используется для взаимодействия между разработчиком и компьютером. Сегодня в сфере компьютерной техники без данного элемента никуда.

    В данной статье я хочу рассказать о том, как происходит компиляция программ, написанных на языке C++ , и описать каждый этап компиляции. Я не преследую цель рассказать обо всем подробно в деталях, а только дать общее видение. Также данная статья - это необходимое введение перед следующей статьей про статические и динамические библиотеки, так как процесс компиляции крайне важен для понимания перед дальнейшим повествованием о библиотеках.


    Все действия будут производиться на Ubuntu версии 16.04 .
    Используя компилятор g++ версии:


    $ g++ --version g++ (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609

    Состав компилятора g++

    • cpp - препроцессор
    • as - ассемблер
    • g++ - сам компилятор
    • ld - линкер

    Мы не будем вызывать данные компоненты напрямую, так как для того, чтобы работать с C++ кодом, требуются дополнительные библиотеки, позволив все необходимые подгрузки делать основному компоненту компилятора - g++ .

    Зачем нужно компилировать исходные файлы?

    Исходный C++ файл - это всего лишь код, но его невозможно запустить как программу или использовать как библиотеку. Поэтому каждый исходный файл требуется скомпилировать в исполняемый файл, динамическую или статическую библиотеки (данные библиотеки будут рассмотрены в следующей статье).

    Этапы компиляции:

    Перед тем, как приступать, давайте создадим исходный.cpp файл, с которым и будем работать в дальнейшем.


    driver.cpp :


    #include using namespace std; #define RETURN return 0 int main() { cout << "Hello, world!" << endl; RETURN; }

    1) Препроцессинг

    Самая первая стадия компиляции программы.


    Препроцессор - это макро процессор , который преобразовывает вашу программу для дальнейшего компилирования. На данной стадии происходит происходит работа с препроцессорными директивами. Например, препроцессор добавляет хэдеры в код (#include ), убирает комментирования, заменяет макросы (#define ) их значениями, выбирает нужные куски кода в соответствии с условиями #if , #ifdef и #ifndef .
    Хэдеры, включенные в программу с помощью директивы #include , рекурсивно проходят стадию препроцессинга и включаются в выпускаемый файл. Однако, каждый хэдер может быть открыт во время препроцессинга несколько раз, поэтому, обычно, используются специальные препроцессорные директивы, предохраняющие от циклической зависимости.


    Получим препроцессированный код в выходной файл driver.ii (прошедшие через стадию препроцессинга C++ файлы имеют расширение .ii ), используя флаг -E , который сообщает компилятору, что компилировать (об этом далее) файл не нужно, а только провести его препроцессинг:


    g++ -E driver.cpp -o driver.ii

    Взглянув на тело функции main в новом сгенерированном файле, можно заметить, что макрос RETURN был заменен:


    int main() { cout << "Hello, world!" << endl; return 0; }

    В новом сгенерированном файле также можно увидеть огромное количество новых строк, это различные библиотеки и хэдер iostream.

    2) Компиляция

    На данном шаге g++ выполняет свою главную задачу - компилирует, то есть преобразует полученный на прошлом шаге код без директив в ассемблерный код . Это промежуточный шаг между высокоуровневым языком и машинным (бинарным) кодом.


    Ассемблерный код - это доступное для понимания человеком представление машинного кода.


    Используя флаг -S , который сообщает компилятору остановиться после стадии компиляции, получим ассемблерный код в выходном файле driver.s :


    $ g++ -S driver.ii -o driver.s

    driver.s

    File "driver.cpp" .local _ZStL8__ioinit .comm _ZStL8__ioinit,1,1 .section .rodata .LC0: .string "Hello, world!" .text .globl main .type main, @function main: .LFB1021: .cfi_startproc pushq %rbp .cfi_def_cfa_offset 16 .cfi_offset 6, -16 movq %rsp, %rbp .cfi_def_cfa_register 6 movl $.LC0, %esi movl $_ZSt4cout, %edi call _ZStlsISt11char_traitsIcEERSt13basic_ostreamIcT_ES5_PKc movl $_ZSt4endlIcSt11char_traitsIcEERSt13basic_ostreamIT_T0_ES6_, %esi movq %rax, %rdi call _ZNSolsEPFRSoS_E movl $0, %eax popq %rbp .cfi_def_cfa 7, 8 ret .cfi_endproc .LFE1021: .size main, .-main .type _Z41__static_initialization_and_destruction_0ii, @function _Z41__static_initialization_and_destruction_0ii: .LFB1030: .cfi_startproc pushq %rbp .cfi_def_cfa_offset 16 .cfi_offset 6, -16 movq %rsp, %rbp .cfi_def_cfa_register 6 subq $16, %rsp movl %edi, -4(%rbp) movl %esi, -8(%rbp) cmpl $1, -4(%rbp) jne .L5 cmpl $65535, -8(%rbp) jne .L5 movl $_ZStL8__ioinit, %edi call _ZNSt8ios_base4InitC1Ev movl $__dso_handle, %edx movl $_ZStL8__ioinit, %esi movl $_ZNSt8ios_base4InitD1Ev, %edi call __cxa_atexit .L5: nop leave .cfi_def_cfa 7, 8 ret .cfi_endproc .LFE1030: .size _Z41__static_initialization_and_destruction_0ii, .-_Z41__static_initialization_and_destruction_0ii .type _GLOBAL__sub_I_main, @function _GLOBAL__sub_I_main: .LFB1031: .cfi_startproc pushq %rbp .cfi_def_cfa_offset 16 .cfi_offset 6, -16 movq %rsp, %rbp .cfi_def_cfa_register 6 movl $65535, %esi movl $1, %edi call _Z41__static_initialization_and_destruction_0ii popq %rbp .cfi_def_cfa 7, 8 ret .cfi_endproc .LFE1031: .size _GLOBAL__sub_I_main, .-_GLOBAL__sub_I_main .section .init_array,"aw" .align 8 .quad _GLOBAL__sub_I_main .hidden __dso_handle .ident "GCC: (Ubuntu 5.4.0-6ubuntu1~16.04.9) 5.4.0 20160609" .section .note.GNU-stack,"",@progbits


    Мы можем все также посмотреть и прочесть полученный результат. Но для того, чтобы машина поняла наш код, требуется преобразовать его в машинный код, который мы и получим на следующем шаге.

    3) Ассемблирование

    Так как x86 процессоры исполняют команды на бинарном коде, необходимо перевести ассемблерный код в машинный с помощью ассемблера .
    Ассемблер преобразовывает ассемблерный код в машинный код, сохраняя его в объектном файле .


    Объектный файл - это созданный ассемблером промежуточный файл, хранящий кусок машинного кода. Этот кусок машинного кода, который еще не был связан вместе с другими кусками машинного кода в конечную выполняемую программу, называется объектным кодом .
    Далее возможно сохранение данного объектного кода в статические библиотеки для того, чтобы не компилировать данный код снова.


    Получим машинный код с помощью ассемблера (as ) в выходной объектный файл driver.o :


    $ as driver.s -o driver.o

    Но на данном шаге еще ничего не закончено, ведь объектных файлов может быть много и нужно их всех соединить в единый исполняемый файл с помощью компоновщика (линкера). Поэтому мы переходим к следующей стадии.

    4) Компоновка

    Компоновщик (линкер) связывает все объектные файлы и статические библиотеки в единый исполняемый файл, который мы и сможем запустить в дальнейшем. Для того, чтобы понять как происходит связка, следует рассказать о таблице символов .


    Таблица символов - это структура данных, создаваемая самим компилятором и хранящаяся в самих объектных файлах. Таблица символов хранит имена переменных, функций, классов, объектов и т.д., где каждому идентификатору (символу) соотносится его тип, область видимости. Также таблица символов хранит адреса ссылок на данные и процедуры в других объектных файлах.
    Именно с помощью таблицы символов и хранящихся в них ссылок линкер будет способен в дальнейшем построить связи между данными среди множества других объектных файлов и создать единый исполняемый файл из них.


    Получим исполняемый файл driver :


    $ g++ driver.o -o driver // также тут можно добавить и другие объектные файлы и библиотеки

    5) Загрузка

    Последний этап, который предстоит пройти нашей программе - вызвать загрузчик для загрузки нашей программы в память. На данной стадии также возможна подгрузка динамических библиотек .


    Запустим нашу программу:


    $ ./driver // Hello, world!

    Заключение

    В данной статье были рассмотрены основы процесса компиляции, понимание которых будет довольно полезно каждому начинающему программисту. В скором времени будет опубликована вторая статья про статические и динамические библиотеки.

    Теги: c++, compiler, gcc, g++

    Компилятоp (от англ. Compile - собирать вместе, составлять) - системная программа, выполняющая преобразование программы, написанной на одном алгоритмическом языке, в программу на языке, близком к машинному, и в определенном смысле эквивалентную первой.
    Компиляторы пишутся как на автокоде, так и на языках высокого уровня. Кроме того, существуют и специальные языки конструирования компиляторов - компиляторы компиляторов.
    Компилятор компиляторов (КК) - система, позволяющая генерировать компиляторы; на входе системы - множество грамматик, а на выходе, в идеальном случае, - программа. Иногда под КК понимают язык программирования, в котором исходная программа - это описание компилятора некоторого языка, а объектная программа - сам компилятор для этого языка. Исходная программа КК - это просто формализм, служащий для описания компиляторов, содержащий, явно или неявно, описание лексического и синтаксического анализаторов, генератора кодов и других частей создаваемого компилятора. Обычно в КК используется реализация схемы т.н. синтаксически управляемого перевода. Кроме того, некоторые из них представляют собой специальные языки высокого уровня, на которых удобно описывать алгоритмы, используемые при создании компиляторов.

    История создания компиляторов
    Первые компиляторы появились в начале 1950-х гг. Сегодня сложно определить, когда появился первый компилятор, поскольку в те годы проводилось множество экспериментов и разработок различными независимыми группами. В основном, целью разработки первых компиляторов было преобразование в машинный код арифметических формул.

    Годом рождения теории компиляторов можно считать 1957, когда появился первый компилятор языка Фортран, созданный Бэкусом и дающий достаточно эффективный объектный код. Он работал на платформах IBM 7040, IBM 360 и DEC PDP-11. В 1980 г. была разработана новая версия для IBM 360 и IBM PC, которая поддерживала стандарт FORTRAN 77. Через год была образована фирма Watcom, которая в 1988 г. представила компилятор C. Он сразу получил широкую популярность среди программистов, так как генерировал самый быстрый код среди компиляторов того времени.

    Основы
    Большая часть компиляторов переводят программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен центральным процессором. Как правило, этот код также должен выполняться в среде конкретной операционной системы, поскольку использует предоставляемые ей возможности (системные вызовы, библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой производится компиляция, называется целевой машиной.
    Некоторые компиляторы (например, Java) переводят программу не в машинный код, а в программу на некотором специально созданном низкоуровневом языке. Такой язык - байт-код - также можно считать языком машинных команд, поскольку он подлежит интерпретации виртуальной машиной. Например, для языка Java это JVM (язык виртуальной машины Java), или так называемый байт-код Java (вслед за ним все промежуточные низкоуровневые языки стали называть байт-кодами). Для языков программирования на платформе.NET Framework (C#, Managed C++, Visual Basic .NET и другие) это MSIL (Microsoft Intermediate Language, "Промежуточный язык фирмы Майкрософт").

    Программа на байт-коде подлежит интерпретации виртуальной машиной, либо ещё одной компиляции уже в машинный код непосредственно перед исполнением. Последнее называеется "Just-In-Time компиляция" (JIT), по названию подобного компилятора для Java. MSIL-код компилируется в код целевой машины также JIT-компилятором, а библиотеки.NET Framework компилируются заранее).
    Для каждой целевой машины (IBM, Apple и т.д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора. Существуют также так называемые кросс-компиляторы, позволяющие на одной машине и в среде одной ОС получать код, предназначенный для выполнения на другой целевой машине и/или в среде другой ОС. Кроме того, компиляторы могут быть оптимизированы под разные типы процессоров из одного семейства (путём использования специфичных для этих процессоров инструкций). Например, код, скомпилированный под процессоры семейства i686, может использовать специфичные для этих процессоров наборы инструкций - MMX, SSE, SSE2.
    Существуют программы, которые решают обратную задачу - перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а программы - декомпиляторами. Но, поскольку компиляция - это процесс с потерями, точно восстановить исходный код, скажем, на C++ в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах - например, существует довольно надёжный декомпилятор для Flash.

    Логическая структура компилятора

    1. Лексический анализ. Лексический анализатор выполняет распознавание лексем языка и замену их соответствующими кодами. Под лексемами понимаются элементарные единицы, входящие в структуру предложения языка, такие как ключевые слова, константы, имена и т.п. Правильность задания структуры предложения языка на фазе лексического анализа не выполняется. Результатом является поток лексем (кодов - ссылок на таблицы), эквивалентный исходному тексту.
    2. Синтаксический анализатор необходим для того, чтобы выяснить, удовлетворяют ли предложения, из которых состоит исходная программа, правилам грамматики этого языка. Процесс синтаксического анализа может рассматриваться как построение дерева грамматического разбора для транслируемых предложений. Грамматики могут использоваться как для порождения так и для распознавания предложений языка. Порождение начинается с начального понятия (или аксиомы грамматики). При распознавании с помощью грамматических правил порождается предложение, которое затем сравнивается с входной строкой. При этом применение правил подстановки для порождения очередного символа предложения зависит от результатов сравнения предыдущих символов с соответствующими символами входной строки. Результат анализа исходного предложения в терминах грамматических конструкций удобно представлять в виде дерева. Такие деревья обычно называются деревьями грамматического разбора или синтаксическими деревьями. READ (VALUE).
    3. Семантический анализ. На этом этапе осуществляется контроль типа и вида всех идентификаторов и других операндов.
    4. Оптимизация. Происходит преобразование исходной программы в промежуточную (например, польскую) форму записи. Оптимизация промежуточного кода - выделение общих подвыражений и вычисление константных подвыражений. Фаза оптимизации предназначена для уменьшения избыточности программы по затратам времени и памяти. В зависимости от критериев проектирования транслятора данная фаза обработки программы может исключаться из цикла обработки программы.
    5. Распределение памяти. На этом этапе выделяются конкретные адреса пользователя под переменные, которые генерируются компилятором.
    6. Генератор объектного (ассемблерного) кода - выполняет подстановку кодовых образцов на выходном языке, соответствующих промежуточным кодам программы. Генератору кода могут не требоваться шаблоны, он весь может быть реализован в процедурном виде.
    7. Машинно-зависимая компиляция. Зависит от того, какие используются регистры. Работа этой процедуры зависит от соглашений, принятых для исполняемой части программы. Например, выделяется базовый регистр для текущей активной записи в стеке. В конкретных реализациях компиляторов, эти этапы могут быть разделены или совмещены в том или ином виде.
    Транслятор
    Транслятор - это программа, которая переводит исходную программу в эквивалентную ей объектную программу. Если объектный язык представляет собой автокод или некоторый машинный язык, то транслятор называется компилятором.

    Автокод очень близок к машинному языку; большинство команд автокода - точное символическое представление команд машины.

    Важной исторической особенностью компилятора являлось то, что он мог производить и компоновку (то есть содержал две части - транслятор и компоновщик). Это связано с тем, что раздельная компиляция и компоновка как отдельная стадия сборки выделились значительно позже появления компиляторов, и многие популярные компиляторы (например, GCC) до сих пор физически объединены со своими компоновщиками. В связи с этим, вместо термина "компилятор" иногда используют термин "транслятор" как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин "компилятор" для подчеркивания способности собирать из многих файлов один).

    Примеры компиляторов
    GCC
    Free Pascal Compiler
    Компиляторы C, C++ и Fortran от Sun Microsystems Inc.
    Watcom Fortran/C++ Compiler
    Intel C++/Fortran compiler
    ICC AVR.

    Литература:
    1. Альфред Ахо, Рави Сети, Джеффри Ульман, "Компиляторы. Принципы, технологии, инструменты", "Вильямс", М.-С-Пб.-К. 2003 г.
    2. Карпов В.Э. "Классическая теория компиляторов", Учебное пособие - Московский государственный институт электроники и математики, М., 2003 г.
    3. Робин Хантер "Основные концепции компиляторов" М.: "Вильямс", 2002 г.
    4. Хантер Р. Проектирование и конструирование компиляторов: Пер. с англ. С. М. Круговой - М. Финансы и статистика, 1984 г.

    Иногда на язык ассемблера) или непосредственно на машинном языке или ином двоичнокодовом низкоуровневом командном языке и последующую сборку исполняемой машинной программы. Если компилятор генерирует исполняемую машинную программу на машинном языке, то такая программа непосредственно исполняется физической программируемой машиной (например компьютером). В других случаях исполняемая машинная программа выполняется соответствующей виртуальной машиной . Входной информацией для компилятора (исходный код) является описание алгоритма или программы на предметно-ориентированном языке , а на выходе компилятора - эквивалентное описание алгоритма на машинно-ориентированном языке (объектный код) .

    Компили́ровать - проводить трансляцию машинной программы с предметно-ориентированного языка на машинно-ориентированный язык. .

    Виды компиляторов [ | ]

    • Векторизующий . Базируется на трансляторе, транслирующем исходный код в машинный код компьютеров, оснащённых векторным процессором .
    • Гибкий . Сконструирован по модульному принципу, управляется таблицами и запрограммирован на языке высокого уровня или реализован с помощью.
    • Диалоговый . См.: .
    • Инкрементальный . Пересобирает программу, заново транслируя только измененные фрагменты программы без перетрансляции всей программы.
    • Интерпретирующий (пошаговый) . Последовательно выполняет независимую компиляцию каждого отдельного оператора (команды) исходной программы.
    • Компилятор компиляторов . Транслятор, воспринимающий формальное описание языка программирования и генерирующий компилятор для этого языка.
    • Отладочный . Устраняет отдельные виды синтаксических ошибок .
    • Резидентный . Постоянно находится в оперативной памяти и доступен для повторного использования многими задачами.
    • Самокомпилируемый . Написан на том же языке программирования, с которого осуществляется трансляция.
    • Универсальный . Основан на формальном описании синтаксиса и семантики входного языка. Составными частями такого компилятора являются: ядро, синтаксический и семантический загрузчики.

    Виды компиляции [ | ]

    Структура компилятора [ | ]

    Процесс компиляции состоит из следующих этапов:

    В первом случае компилятор представляет собой пакет программ, включающий в себя трансляторы с разных языков программирования и компоновщики. Такой компилятор может компилировать программу, разные части исходного текста которой написаны на разных языках программирования. Нередко такие компиляторы управляются встроенным интерпретатором того или иного командного языка. Яркий пример таких компиляторов - имеющийся во всех UNIX-системах (в частности в Linux) компилятор make .

    Во втором случае компилятор де-факто выполняет только трансляцию и далее вызывает компоновщик как внешнюю подпрограмму, который и компонует машинно-ориентированную программу. Этот факт нередко служит поводом считать компилятор разновидностью транслятора, что естественно неверно, - все современные компиляторы такого типа поддерживают организацию импорта программой процедуры (функции) из уже оттранслированого программного модуля, написанного на другом языке программирования. Так в программу на С/С++ можно импортировать функцию написанную например Pascal или Fortran . Аналогично и напротив написанная на С/С++ функция может быть импортирована в Pascal- или Fortran-программу соответственно. Это как правило было бы невозможно без поддержки многими современными компиляторами организации обработки входных данных в процедуру (функций) в соответствии с соглашениями других языков программирования. Например современные компиляторы с языка Pascal помимо соглашения самого Pascal поддерживает организацию обработки процедурая/функцией входных в соответствии с соглашениями языка С/С++. (Чтобы на уровне машинного кода написанная на Pascal процедура/функция работала с входными параметрами в соответствии с соглашениями языка С/С++, - оператор объявления такой Pascal-процедуры/Pascal-функции должен содержать ключевое слово cdecl .) Примерами таких компиляторов являются компиляторы со всех без исключения языков программирования, используемые непосредственно.

    Трансляция программы как неотъемлемая составляющая компиляции включает в себя:

    Генерация кода [ | ]

    Генерация машинного кода [ | ]

    Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код , который может быть непосредственно выполнен физическим процессором . Как правило, этот код также ориентирован на исполнение в среде конкретной операционной системы , поскольку использует предоставляемые ею возможности (системные вызовы , библиотеки функций). Архитектура (набор программно-аппаратных средств), для которой компилируется (собирается) машинно-ориентированная программа, называется целевой машиной .

    Результат компиляции - исполнимый программный модуль - обладает максимально возможной производительностью, однако привязан к конкретной операционной системе (семейству или подсемейству ОС) и процессору (семейству процессоров) и не будет работать на других.

    Некоторые компиляторы переводят программу с языка высокого уровня не прямо в машинный код, а на язык ассемблера . (Пример: PureBasic , транслирующий бейсик-код в ассемблер FASM .) Это делается для упрощения части компилятора, отвечающей за генерацию кода, и повышения его переносимости (задача окончательной генерации кода и привязки его к требуемой целевой платформе перекладывается на ассемблер), либо для возможности контроля и исправления результата компиляции (в т. ч. ручной оптимизации) программистом.

    Генерация байт-кода [ | ]

    Результатом работы компилятора может быть программа на специально созданном низкоуровневом языке двоично-кодовых команд, выполняемых виртуальной машиной . Такой язык называется псевдокодом или байт-кодом . Как правило, он не есть машинный код какого-либо компьютера и программы на нём могут исполняться на различных архитектурах, где имеется соответствующая виртуальная машина, но в некоторых случаях создаются аппаратные платформы, напрямую выполняющие псевдокод какого-либо языка. Например, псевдокод языка Java называется байт-кодом Java и выполняется в Java Virtual Machine , для его прямого исполнения была создана спецификация процессора picoJava . Для платформы .NET Framework псевдокод называется Common Intermediate Language (CIL), а среда исполнения - Common Language Runtime (CLR).

    Некоторые реализации интерпретируемых языков высокого уровня (например, Perl) используют байт-код для оптимизации исполнения: затратные этапы синтаксического анализа и преобразование текста программы в байт-код выполняются один раз при загрузке, затем соответствующий код может многократно использоваться без перекомляции.

    Динамическая компиляция [ | ]

    Из-за необходимости интерпретации байт-код выполняется значительно медленнее машинного кода сравнимой функциональности, однако он более переносим (не зависит от операционной системы и модели процессора). Чтобы ускорить выполнение байт-кода, используется динамическая компиляция , когда виртуальная машина транслирует псевдокод в машинный код непосредственно перед его первым исполнением (и при повторных обращениях к коду исполняется уже скомпилированный вариант).

    Наиболее популярной разновидностью динамической компиляции является JIT . Другой разновидностью является .

    CIL-код также компилируется в код целевой машины JIT-компилятором, а библиотеки .NET Framework компилируются заранее.

    Трансляция байт-кода в машинный код [ | ]

    Трансляция байт-кода в машинный код специальным транслятором байт-кода как указано выше неотъемлемая фаза динамической компиляции. Но трансляция байт-кода применима и для простого преобразования программы на байт-коде в эквивалентную программу на машинном языке. В машинный код может транслироваться как заранее скомпилированный байт-код. Но также трансляция байт-кода в машинный код может выполняться компилятором байт-кода сразу следом за компиляцией байт-кода. Практически всегда в последнем случае трансляция байт-кода выполняется внешним транслятором, вызываемым компилятором байт-кода.

    Декомпиляция [ | ]

    Существуют программы, которые решают обратную задачу - перевод программы с низкоуровневого языка на высокоуровневый. Этот процесс называют декомпиляцией, а такие программы - декомпиляторами . Но поскольку компиляция - это процесс с потерями, точно восстановить исходный код, скажем, на C++, в общем случае невозможно. Более эффективно декомпилируются программы в байт-кодах - например, существует довольно надёжный декомпилятор для Flash . Разновидностью декомпиляции является дизассемблирование машинного кода в код на языке ассемблера, который почти всегда благополучно выполняется (при этом сложность может представлять самомодифицирующийся код или код, в котором собственно код и данные не разделены). Связано это с тем, что между кодами машинных команд и командами ассемблера имеется практически взаимно-однозначное соответствие.

    Раздельная компиляция [ | ]

    Раздельная компиляция (библиотеки , которые можно компилировать независимо друг от друга. В процессе трансляции программы сам компилятор или вызываемый компилятором транслятор порождает объектный модуль , содержащий дополнительную информацию, которая потом - в процессе компоновки частей в исполнимый модуль - используется для связывания и разрешения ссылок между частями программы. Раздельная компиляция также позволяет писать разные части исходного текста программы на разных языках программирования.

    Появление раздельной компиляции и выделение компоновки как отдельной стадии произошло значительно позже создания компиляторов. В связи с этим вместо термина «компилятор» иногда используют термин «транслятор» как его синоним: либо в старой литературе, либо когда хотят подчеркнуть его способность переводить программу в машинный код (и наоборот, используют термин «компилятор» для подчёркивания способности собирать из многих файлов один). Вот только использование в таком контексте терминов «компилятор» и «транслятор» неправильно. Даже если компилятор выполняет трансляцию программы самостоятельно, поручая компоновку вызываемой внешней программе-компоновщику, такой компилятор не может считаться разновидностью транслятора, - транслятор выполняет трансляцию исходной программы и только. И уж тем более не являются трансляторами компиляторы вроде системной утилиты-компилятора make , имеющейся во всех UNIX-системах.