6 канальный вольтметр на ардуино. Секретный вольтметр в Arduino — измерение напряжения батареи средствами микроконтроллера

Привет, Хабр! Сегодня хочу продолжить тему «скрещивания» arduino и android. В предыдущей публикации я рассказал про , а сегодня речь пойдет про DIY bluetooth вольтметр. Еще такой девайс можно назвать смарт вольтметр, «умный» вольтметр или просто умный вольтметр, без кавычек. Последнее название является неправильным с точки зрения грамматики русского языка, тем не менее частенько встречается в СМИ. Голосование на эту тему будет в конце статьи, а начать предлагаю с демонстрации работы устройства, чтобы понять о чем же пойдет речь в статье.


Disclaimer: статья рассчитана на среднестатистического любителя arduino, который обычно не знаком с программированием под android, поэтому как и в прошлой статье, приложение для смартфона мы будем делать, используя среду визуальной разработки android-приложений App Inventor 2.
Чтобы сделать DIY bluetooth вольтметр нам нужно написать две относительно независимых друг от друга программы: скетч для ардуино и приложение для андроид.Пожалуй начнем со скетча.
Для начала следует знать, что существует три основных варианта измерения напряжения при помощи ардуино, не зависимо от того куда нужно выводить информацию: в com-порт, на подключенный к ардуино экранчик, или на смартфон.
Первый случай: измерения напряжения до 5 вольт. Здесь достаточно одной-двух строк кода, а напряжение подается напрямую на пин А0:
int value = analogRead(0);// читаем показания с А0
voltage = (value / 1023.0) * 5; // верно только если Vcc = 5.0 вольт
Второй случай: для измерения напряжения более 5 вольт используется делитель напряжения. Схема очень простая, код тоже.

Скетч

int analogInput = A0;
float val = 0.0;
float voltage = 0.0;
float R1 = 100000.0; //Battery Vin-> 100K -> A0
float R2 = 10000.0; //Battery Gnd -> Arduino Gnd and Arduino Gnd -> 10K -> A0
int value = 0;

Void setup() {
Serial.begin(9600);
pinMode(analogInput, INPUT);
}

Void loop() {
value = analogRead(analogInput);
val = (value * 4.7) / 1024.0;
voltage = val / (R2/(R1+R2));
Serial.println(voltage);
delay(500);
}


Arduino Uno
Блютуз модуль
Третий случай. Когда нужно получить более точные о напряжении в качестве опорного напряжения нужно использовать не напряжение питания, которое может немного меняться при питании от акб, например, а напряжение внутренного стабилизатора ардуино 1.1 вольт.Тут схема такая же, но код чуть длиннее. Подробно этот вариант разбирать не буду, так как он и так хорошо описан в тематических статьях, а мне вполне и достаточно второго способа, поскольку питание у меня стабильное, от usb-порта ноутбука.
Итак с измерением напряжения мы разобрались, теперь перейдем ко второй половине проекта: созданию андроид-приложения. Приложение будем делать прямо из браузера в среде визуальной разработки android-приложений App Inventor 2. Заходим на сайт appinventor.mit.edu/explore , авторизуемся с помощью гугл-аккаунта, нажимаем кнопку create, new project, и путем простого перетаскивания элементов создаем примерно такой дизайн:

Я сделал графику очень простой, если кому-то захочется более интересной графики, напомню, что для этого нужно использовать вместо.jpeg файлов, файлы формата.png с прозрачным фоном.
Теперь переходим во вкладку Blocks и создаем там логику работы приложения примерно так:


Если все получилось можно нажимать кнопку Build и save .apk to my computer, а затем уже скачиваем и устанавливаем приложение на смартфон, хотя есть и другие способы заливки приложения. тут уж кому как удобнее. В итоге у меня получилось вот такое приложение:


Понимаю, что мало кто использует среду визуальной разработки android-приложений App Inventor 2 в своих проектах, поэтому может возникнуть много вопросов по поводу работы в ней. Чтобы снять часть таких вопросов, я сделал подробное видео, о том как сделать такое приложение «с нуля»(для просмотра нужно перейти на ютуб):

P.S. Сборник из более 100 обучающих материалов по ардуино для начинающих и профи

В этой статье показано как связать Arduino и ПК и передавать на ПК данные с АЦП. Программа для Windows написана с использованием Visual C++ 2008 Express. Программа вольтметра очень проста и имеет обширное поле для улучшений. Основной её целью было показать работу с COM-портом и обмен данными между компьютером и Arduino.

Связь между Arduino и ПК:

  • Снятие показаний с АЦП начинается, когда компьютер посылает Arduino команды 0xAC и 0x1y. у – номер канала АЦП (0-2);
  • Снятие показаний прекращается после получения Arduino команд 0xAC и 0×00;
  • Во время снятия показаний Arduino раз в 50 мс посылает компьютеру команды 0xAB 0xaa 0xbb, где aa и bb максимальные и минимальные результаты измерения.

Программа для Arduino

Подробнее о последовательной связи Вы можете прочесть на arduino.cc. Программа достаточно проста, большую её часть занимает работа с параллельным портом. После окончания снятия данных с АЦП мы получаем 10 битное значение напряжения (0×0000 – 0×0400) в виде 16-битных переменных (INT). Последовательный порт (RS-232) позволяет передавать данные в пакетах по 8 бит. Необходимо разделить 16-битные переменные на 2 части по 8 бит.

Serial.print(voltage>>8,BYTE);

Serial.print(voltage%256,BYTE);

Мы смещаем байты переменной на 8 бит вправо и потом делим на 256 и результат отправляем на компьютер.

Полный исходник ПО для Arduino вы можете скачать

Visual C++

Я предполагаю, что у Вас уже есть базовые знания в области программирования на C + + для Windows, если нет, то используйте Google. Интернет полон уроков для начинающих.

Первое, что нужно сделать, это добавить последовательный порт из панели инструментов в нижнюю форму. Это позволит изменить некоторые важные параметры последовательного порта: имя порта, скорость передачи данных, битность. Это полезно для добавления элементов управления в окно приложения, для изменения этих настроек в любое время, без перекомпиляции программы. Я использовал только возможность выбора порта.

После поиска доступных последовательных портов первый порт выбирается по умолчанию. Как это сделано:

array< String ^>^ serialPorts = nullptr;

serialPorts = serialPort1->GetPortNames();

this->comboBox1->Items->AddRange(serialPorts);

this->comboBox1->SelectedIndex=0;

Последовательный порт на ПК может быть использован только одним приложением одновременно, так что порт должен быть открыт перед использованием и не закрываться. Простые команды для этого:

serialPort1->Open();

serialPort1->Close();

Для правильного чтения данных из последовательного порта необходимо использовать события (в нашем случае прерывание). Выберите тип события:

Раскрывающийся список при двойном нажатии "DataReceived".

Код события генерируется автоматически:

Если первый байт прибывший по последовательному порту 0xAB, если это означает, что остальные байты несут данные о напряжении.

private: System::Void serialPort1_DataReceived(System::Object^ sender, System::IO::Ports::SerialDataReceivedEventArgs^ e) {

unsigned char data0, data1;

if (serialPort1->ReadByte()==0xAB) {

data0=serialPort1->ReadByte();

data1=serialPort1->ReadByte();

voltage=Math::Round((float(data0*256+data1)/1024*5.00),2);

data_count++;

serialPort1->ReadByte();

Запись и чтение данных последовательного порта

Для меня небольшой проблемой было послать шестнадцатиричные RAW-данные через последовательный порт. Была использованна команда Write(); но с тремя аргументами: массив, номер стартового байта, кол-во байтов для записи.

private: System::Void button2_Click_1(System::Object^ sender, System::EventArgs^ e) {

unsigned char channel=0;

channel=this->listBox1->SelectedIndex;

array^start ={0xAC,(0x10+channel)};

array^stop ={0xAC,0x00};

serialPort1->Write(start,0,2);

this->button2->Text="Stop";

} else {

serialPort1->Write(stop,0,2);

this->button2->Text="Start";

На этом все!

Оригинал статьи на английском языке (перевод: Александр Касьянов для сайта cxem.net)

Привет, Хабр! Сегодня хочу продолжить тему «скрещивания» arduino и android. В предыдущей публикации я рассказал про bluetooth машинку , а сегодня речь пойдет про DIY bluetooth вольтметр. Еще такой девайс можно назвать смарт вольтметр, «умный» вольтметр или просто умный вольтметр, без кавычек. Последнее название является неправильным с точки зрения грамматики русского языка, тем не менее частенько встречается в СМИ. Голосование на эту тему будет в конце статьи, а начать предлагаю с демонстрации работы устройства, чтобы понять о чем же пойдет речь в статье.


Disclaimer: статья рассчитана на среднестатистического любителя arduino, который обычно не знаком с программированием под android, поэтому как и в прошлой статье, приложение для смартфона мы будем делать, используя среду визуальной разработки android-приложений App Inventor 2.
Чтобы сделать DIY bluetooth вольтметр нам нужно написать две относительно независимых друг от друга программы: скетч для ардуино и приложение для андроид.Пожалуй начнем со скетча.
Для начала следует знать, что существует три основных варианта измерения напряжения при помощи ардуино, не зависимо от того куда нужно выводить информацию: в com-порт, на подключенный к ардуино экранчик, или на смартфон.
Первый случай: измерения напряжения до 5 вольт. Здесь достаточно одной-двух строк кода, а напряжение подается напрямую на пин А0:
int value = analogRead(0);// читаем показания с А0
voltage = (value / 1023.0) * 5; // верно только если Vcc = 5.0 вольт
Второй случай: для измерения напряжения более 5 вольт используется делитель напряжения. Схема очень простая, код тоже.

Скетч

int analogInput = A0;
float val = 0.0;
float voltage = 0.0;
float R1 = 100000.0; //Battery Vin-> 100K -> A0
float R2 = 10000.0; //Battery Gnd -> Arduino Gnd and Arduino Gnd -> 10K -> A0
int value = 0;

Void setup() {
Serial.begin(9600);
pinMode(analogInput, INPUT);
}

Void loop() {
value = analogRead(analogInput);
val = (value * 4.7) / 1024.0;
voltage = val / (R2/(R1+R2));
Serial.println(voltage);
delay(500);
}


Arduino Uno
Блютуз модуль
Третий случай. Когда нужно получить более точные о напряжении в качестве опорного напряжения нужно использовать не напряжение питания, которое может немного меняться при питании от акб, например, а напряжение внутренного стабилизатора ардуино 1.1 вольт.Тут схема такая же, но код чуть длиннее. Подробно этот вариант разбирать не буду, так как он и так хорошо описан в тематических статьях, а мне вполне и достаточно второго способа, поскольку питание у меня стабильное, от usb-порта ноутбука.
Итак с измерением напряжения мы разобрались, теперь перейдем ко второй половине проекта: созданию андроид-приложения. Приложение будем делать прямо из браузера в среде визуальной разработки android-приложений App Inventor 2. Заходим на сайт appinventor.mit.edu/explore , авторизуемся с помощью гугл-аккаунта, нажимаем кнопку create, new project, и путем простого перетаскивания элементов создаем примерно такой дизайн:

Я сделал графику очень простой, если кому-то захочется более интересной графики, напомню, что для этого нужно использовать вместо.jpeg файлов, файлы формата.png с прозрачным фоном.
Теперь переходим во вкладку Blocks и создаем там логику работы приложения примерно так:


Если все получилось можно нажимать кнопку Build и save .apk to my computer, а затем уже скачиваем и устанавливаем приложение на смартфон, хотя есть и другие способы заливки приложения. тут уж кому как удобнее. В итоге у меня получилось вот такое приложение:


Понимаю, что мало кто использует среду визуальной разработки android-приложений App Inventor 2 в своих проектах, поэтому может возникнуть много вопросов по поводу работы в ней. Чтобы снять часть таких вопросов, я сделал подробное видео, о том как сделать такое приложение «с нуля»(для просмотра нужно перейти на ютуб):

P.S. Сборник из более 100 обучающих материалов по ардуино для начинающих и профи

В этой статье приводится интересная схема для любителей экспериментов и Arduino . В ней представлен простой цифровой вольтметр, который может безопасно измерять постоянное напряжение в диапазоне от 0 до 30 В. Сама плата Arduino может питаться от стандартного источника 9 В.



Как известно, с помощью аналогового входа Arduino можно измерить напряжение от 0 до 5 В (при стандартном опорном напряжении 5 В). Но этот диапазон можно расширить, воспользовавшись делителем напряжения.


Делитель понижает измеряемое напряжение до приемлемого для аналогового входа уровня. Затем специально написанный код высчитывает фактическое напряжение.



Аналоговый датчик в составе Arduino определяет напряжение на аналоговом входе и преобразует его в цифровой формат, воспринимаемый микроконтроллером. К аналоговому входу A0 мы подключаем делитель напряжения, образованный сопротивлениями R1 (100K) и R2 (10K). С такими значениями сопротивлений на Arduino можно подавать до 55 В, поскольку коэффициент деления в данном случае получается 11, поэтому 55В/11=5В. Для того, чтобы быть уверенным в безопасности измерений для платы, лучше проводить измерение напряжения в диапазоне от 0 до 30 В.



Если показания дисплея не соответствуют показанием поверенного вольтметра, следует использовать прецизионный цифровой мультиметр для нахождения точных значений R1 и R2. При этом в коде нужно будет заменить R1=100000.0 и R2=10000.0 своими значениями. Затем стоит проверить питание, измерив на плате напряжение между 5V и GND. Напряжение может быть 4.95 В. Тогда в коде vout = (value * 5.0) / 1024.0 нужно заменить 5.0 на 4.95. Желательно использовать прецизионные резисторы с погрешностью не более 1%. Помните, что напряжение выше 55 В может вывести плату Arduino из строя!



#include LiquidCrystal lcd(7, 8, 9, 10, 11, 12); int analogInput = 0; float vout = 0.0; float vin = 0.0; float R1 = 100000.0; // сопротивление R1 (100K) float R2 = 10000.0; // сопротивление R2 (10K) int value = 0; void setup(){ pinMode(analogInput, INPUT); lcd.begin(16, 2); lcd.print("DC VOLTMETER"); } void loop(){ // считывание аналогового значения value = analogRead(analogInput); vout = (value * 5.0) / 1024.0; vin = vout / (R2/(R1+R2)); if (vin<0.09) { vin=0.0;// обнуляем нежелательное значение } lcd.setCursor(0, 1); lcd.print("INPUT V= "); lcd.print(vin); delay(500); }


Используемые элементы:


Плата Arduino Uno
Резистор 100 КОм
Резистор 10 КОм
Резистор 100 Ом
Потенциометр 10 КОм
LCD-дисплей 16×2

Широкий интерес для любителей самодельных электронно-программируемых устройств представляют многофункциональные сборки Arduino, позволяющие воплощать в жизнь интересные задумки.

Основное преимущество готовых схем Arduino заключается в уникальном блочно-модульном принципе: каждая плата может быть добавлена дополнительными интерфейсами, бесконечно расширяя возможности для создания различных проектов.

Модули Arduino построены на универсальном микроконтроллере с собственным загрузчиком, что позволяет легко прошивать его необходимым программным кодом, без использования дополнительных устройств. Программирование осуществляется на стандартном языке С++.

Одним из простейших примеров использования Arduino может стать реализация на базе этой сборки вольтметра постоянного напряжения повышенной точности с диапазоном измерения от 0 до 30 В.

Аналоговые входы Arduino предназначены для постоянного напряжения не более пяти вольт, поэтому, использование их при превышающих это значение напряжениях возможно с делителем напряжения.


Схема подключения Areduino через делитель напряжения

Делитель напряжения состоит из двух последовательно соединенных сопротивлений. Расчет его производится по формуле:

Внешний USB-разъем в автомагнитоле