Intel Pentium и Core i3: двухъядерная оптимальность. Какой он был Pentium (6 фото)

Еще недавно, каких-то лет 20 назад, производительность компьютера полностью определялась центральным процессором. Собственно, сами компьютеры именовались по поколению процессоров – «тройка», «четверка», «пентиум». И сразу всем было понятно – на что способна система. Но года с 1997-го важную роль начали играть 3D-ускорители, радикально повышающие производительность в играх. Сначала они были дополнением к основной видеокарте, но очень скоро переехали в нее саму. Больше того, видеокарты научились брать на себя часть нагрузки, раньше лежавшей на центральном процессоре.

Поэтому сегодня производительность ПК определяется связкой процессора, видеокарты, памяти и накопителя. Ни один из компонентов не способен «вытащить» скорость в одиночку. И все же процессор до сих пор задает уровень машины, и именно с него начинается выбор конфигурации.

Я помню время, когда выбирать процессор было легко. Они отличались только поколением, частотой и, конечно, ценой. Чем новее поколение и выше частота, тем быстрее. Оцениваешь свои финансовые возможности – и покупаешь. Хорошие были времена. Жаль, что денег на нормальные процессоры тогда не хватало.

Занятно, что на “вафле”, вышедшей из печки, могут быть очень разные процессоры. В смысле, кристаллы-то одинаковые, но как их промаркируют – большой вопрос.

Сейчас все, мягко говоря, сложнее. Возьмем для начала продукцию Intel. В продаже одновременно три поколения процессоров (а в некоторых случаях и четыре) для настольных систем. Каждое поколение разбито на три семейства. Каждое семейство, в свою очередь, разбито на группы, от 3 до 10 (!). И в каждой группе от нескольких штук до полутора десятков процессоров. Нормально, да? Даже человеку, который в этом немного разбирается, определиться бывает непросто. А уж нормальным людям, которым нужно быстро, не заморачиваясь купить компьютер, совсем тяжко.

Прочитав этот текст до конца, вы сможете выбрать процессор для своих нужд, не тратя на него лишних денег. Которые, на самом деле, очень даже нелишние.

Начнем с азов

Процессоры для персональных компьютеров сегодня делают две компании – Intel и AMD . Еще пару лет назад я бы сказал, что выбирать следует только из продукции Intel, потому что AMD катастрофически отставала по производительности. Но, к счастью, компании удалось ликвидировать разрыв, и сегодня процессоры конкурируют практически на равных. В этом материале мы поговорим о том, что выпускает Intel, а про AMD напишу позднее.

Процессоры для настольных компьютеров и ноутбуков существенно отличаются по характеристикам и производительности. Проще говоря, у них вообще мало общего, кроме названий. Мобильные версии существенно медленнее: Core i7 в ультрабуке проигрывает Core i3 в домашней системе. В данном материале речь идет именно о стационарных, настольных версиях. Именно их мы можем выбирать по собственному вкусу, тогда как в ноутбуке чип впаян намертво и заменить его нельзя. Можно только поменять целиком ноутбук.

Количество ядер само по себе не определяет производительность . Продавцы в магазинах любят утверждать обратное: мол, четыре ядра лучше двух, берите побольше! На самом деле, многое зависит от задач. Если компьютер будет использоваться для набора текстов, любительской обработки фотографий и даже 3D-игр, типа World of Tanks, разницы между 2 и 4 ядрами вы не почувствуете. Просто потому, что большинство программ до сих пор умеет использовать только два ядра, а остальные будут простаивать. Конечно, если денег куры не клюют, надо брать все САМОЕ ДОРОГОЕ. Но в ситуации с ограниченным бюджетом двухъядерный процессор с высокой частотой выглядит более предпочтительной покупкой. Также есть смысл сэкономить на процессоре, если не хватает на быструю видеокарту: от нее в играх толку определенно больше. Четыре ядра всерьез пригодятся при рендеринге видео, массовой конвертации фотографий из RAW в JPEG, при работе с 3D-графикой, архивации больших объемов данных и т.д. и т.п. То есть при решении скорее профессиональных, чем домашних задач.

Кэш имеет значение. Кэш – это сверхбыстрая память, встроенная в сам процессор. В стародавние времена, когда оперативная память и накопители были медленными, объем кэша являлся критическим для производительности параметром. Вот серьезно, когда в процессоре объем кэша увеличивался с 512 килобайт до 1 мегабайта, при той же частоте скачок скорости был заметен невооруженным глазом. Сейчас кэш уже не играет такого значения, но все же когда наиболее часто используемые данные находятся внутри процессора, это полезно. На тестах производительности это не сказывается, но отзывчивость компьютера тем выше, чем больше объем. В современных процессорах Intel объем кэша бывает от 2 до 12 мегабайт.

Процессоры отличаются поколениями. Сейчас на полках рядышком лежат сразу три поколения Intel Core – шестое, седьмое и восьмое. Первые два отличаются чисто косметически, используют одно и то же гнездо на материнской плате, и, в общем, взаимозаменяемы. Которое дешевле – то и берем. Восьмое поколение претерпело существенные изменения, о которых напишу отдельно. И оно, увы, требует новую материнскую плату, на которой не работают процессоры шестого и седьмого поколений. Так что перед покупателем встает своеобразная дилемма: покупать чуть дешевле немасштабируемую систему на процессорах старого поколения, где при апгрейде придется менять сразу и процессор, и материнскую плату, или взять сразу новое, где – возможно – при необходимости можно будет поменять только процессор. Это такая иллюзорная надежда, потому что у «старого» процессора запаса производительности хватит надолго, уж года на два точно. А к тому времени Intel придумает еще какое-нибудь несовместимое гнездо. Но надеяться, конечно, надо.

В чем там разница?

У Intel сегодня три семейства процессоров – Celeron, Pentium и Core.

Celeron исторически самая дешевая и медленная разновидность , предназначенная для компьютеров базового уровня. Когда они только появились, пользоваться ими без разгона было не очень комфортно. Впрочем, разгонялись первые Celeron знатно, у меня получилось раскочегарить Celeron 300A с 300 МГц до 450, что давало производительность на уровне топовых Pentium II того времени.

Но времена изменились. Например, Celeron G3950 работает на частоте 3 ГГц, имеет два ядра и выполнен по современному 14-нанометровому техпроцессу. А стоит при этом чуть больше 3 тысяч рублей. Не рекордсмен, конечно, но для большинства офисных машинок подходит просто идеально.

Pentium – бодрые середнячки . Линейка Pentium G имеет частоту от 3.5 до 3.7 ГГц, что в сочетании с 3 мегабайтами кэша и двумя ядрами обеспечивает, мягко говоря, приличную производительность. В паре с топовой видеокартой такой процессор не посрамит даже топовую игру. К недостаткам можно отнести разве что отсутствие поддержки технологии Turbo Boost, дополнительно разгоняющей ядра процессора под высокой нагрузкой, но с учетом базовых частот современных Pentium это вряд ли так уж важно. Тем более, что новые модели Pentium, в отличие от шестого и седьмого поколения Core i3, поддерживают технологию Hyper-Threading, которая помогает выполнять два потока команд на одном ядре. Цена от 3300 до 5000 рублей.

Core – топовое семейство. Но внутри него не все так однозначно, потому что внутри него живут очень-очень разные процессоры.

Core i 3 до недавнего времени были очень похожи на Pentium. Отличия обнаруживались только в частотах (еще чуть выше) и объеме кэша (4 мегабайта вместо 3). Смысла переплачивать не было, если честно. Но недавно в продаже появились Core i3 8-го поколения, где по старой цене двухъядерной модели дают четырехъядерную, а объем кэша составляет 8 мегабайт. В России, правда, пока разница в цене со старыми моделями присутствует, но несерьезная, несколько сотен рублей. Например, Intel Core i3-8100 стоит около 9 тысяч, и если «бесплатные» ядра почувствуют далеко не все пользователи, то вот 8-мегабайтный кэш очень в тему. Цена Core i3, в зависимости от поколения и частоты, колеблется в промежутке от 7 до 14 тысяч рублей.

Core i 5 – золотая середина. В абсолютном большинстве случаев это и есть топовый процессор для домашних нужд. Все там в лучшем виде – и 4 ядра для серьезных задач, и высокие частоты, и Turbo Boost для ускорения под нагрузкой, и кэша достаточно. А в восьмом поколении число ядер у топовых Core i5 увеличили до 6 штук. Если честно, мне трудно представить задачу, где пригодится столько. Уж четыре-то ядра до сих пор мало приложений умеет нагружать как следует, а когда научатся работать с шестью? Вопрос большой. С другой стороны, здесь, как и с Core i3, используется принцип «больше ядер по прежней цене». И если шесть стоят, как четыре – ну почему б не взять? Ради все того же кэша. Честно предупреждаю: разницы не почувствуете. Но моральное удовлетворение – вполне возможно. Разброс цен снова большой – от 11 до 24 тысяч рублей.

Core i 7 – топ из топов. Отличие от Core i5 в более высокой частоте и увеличенном объеме кэша. Плюс появляется такой зверь, как уже упомянутая Hyper-Threading. Это довольно старая технология, появившаяся еще в Pentium 4, благодаря которой каждое ядро притворяется для приложений сразу двумя. То есть с точки зрения программ в системе не 4 ядра, а восемь. Ну или не 6, а 12, если говорить о восьмом поколении. Серьезного смысла в покупке Core i7 домой нет. Вот просто нет и все. Рекомендуется только тем, кто кушать не может, пока не купит самое-самое крутое. В восьмом поколении Core i7 также получили 6 ядер и аж 12 мегабайт кэша. Цена вопроса от 20 до 34 тысяч рублей. Да, кстати, у меня Core i7.

Полезные советы

Не жалейте денег на материнскую плату . Вот не жалейте и все тут. Чтобы и породы хорошей, и разъемов всяких вдоволь, и даже излишества кое-какие не помешают, вроде улучшенного встроенного звука и Wi-Fi/Bluetooth-модулей. Мать – всему голова, и от нее зависит, насколько стабильно будет работать система. Мне нравится продукция ASUS, ASRock и Gigabyte.

В названии процессоров семейства Core на конце встречается буква К . Например, Intel Core i7-8700K. Это означает, что у процессора разблокирован множитель, и вы можете попробовать разогнать его до более высокой частоты стандартными средствами материнской платы, без дополнительного колдунства. Никакого экономического смысла в этом нет, потому что множитель разблокируют только у самых дорогих и производительных моделей, и без того работающих на высокой частоте. Но развлечься можно. Главное, не забыть купить хороший кулер с большим радиатором.

Двухъядерные Celeron , Pentium и Core i 3 вполне могут работать с пассивным охлаждением , если в корпусе компьютера есть хоть один вентилятор. Достаточно поставить на них эффективный радиатор и умеренно щедро смазать термопастой.

Во всех современных процессорах Intel есть встроенное графическое ядро . Оно слабо подходит для игр, но со всем остальным справляется. Больше того, во всех актуальных моделях есть аппаратное кодирование и декодирование видео, которое раньше было атрибутом старших процессоров.

Я специально оставил за кадром линейку Core X , где водятся совсем уж дорогие модели для состоятельных маньяков. Если у вас уж совсем много денег, найдете себе такой и без моих подсказок.

Продолжение про AMD находится в работе. Вопросы можно (и нужно) задавать по адресу [email protected] .

Просмотры: 6 260

Pentium I
В конце 1991 года, когда была завершен макет процессора, инженеры смогли запустить на нем программное обеспечение. Проектировщики начали изучать под микроскопом разводку и прохождение сигналов по подложке с целью оптимизации топологии и повышения эффективности работы.

Проектирование в основном было завершено в феврале 1992 года. Началось всеобъемлющее тестирование опытной партии процессоров, в течение которого испытаниям подвергались все блоки и узлы. В апреле 1992 года было принято решение, что пора начинать промышленное освоение Pentium процессора. В качестве основной промышленной базы была выбрана 5 Орегонская фабрика. Более 3 миллионов транзисторов были окончательно перенесены на шаблоны. Началось промышленное освоение производства и доводка технических характеристик, завершившиеся через 10 месяцев, 22 марта 1993 года широкой презентацией Pentium процессора.
Объединяя более, чем 3.1 миллион транзисторов на одной кремниевой подложке, 32-разрядный Pentium процессор характеризуется высокой производительностью с тактовой частотой 60 и 66 МГц. Его суперскалярная архитектура использует усовершенствованные способы проектирования, которые позволяют выполнять более, чем одну команду за один период тактовой частоты, в результате чего Pentium в состоянии выполнять огромное количество PC-совместимого программного обеспечения быстрее, чем любой другой микропроцессор. Кроме существующих наработок программного обеспечения, высокопроизводительный арифметический блок с плавающей запятой Pentium процессора обеспечивает увеличение вычислительной мощности до необходимой для использования недоступных ранее технических и научных приложений, первоначально предназначенных для платформ рабочих станций.
Многочисленные нововведения - характернаяособенность
Pentium процессора в виде уникального сочетания высокой производительности, совместимости, интеграции данных и наращиваемости. Это включает:- Суперскалярную архитектуру;
- Раздельное кэширование программного кода и данных;
- Блок предсказания правильного адреса перехода;
- Высокопроизводительный блок вычислений с плавающей запятой;
- Расширенную 64-битовую шину данных;
- Поддержку многопроцессорного режима работы;
- Средства задания размера страницы памяти;
- Средства обнаружения ошибок и функциональной избыточности;
- Управление производительностью;
- Наращиваемость с помощью Intel OverDrive процессора. Cуперскалярная архитектура Pentium процессора представляет
собой совместимую только с Intel двухконвейерную индустриальную архитектуру, позволяющую процессору достигать новых уровней производительности посредством выполнения более, чем одной команды за один период тактовой частоты. Термин "суперскалярная" обозначает микропроцессорную архитектуру, которая содержит более одного вычислительного блока. Эти вычислительные блоки, или конвейеры, являются узлами, где происходят все основные процессы обработки данных и команд.
Появление суперскалярной архитектуры Pentium процессора представляет собой естественное развитие предыдущего семейства процессоров с 32-битовой архитектурой фирмы Intel. Например, процессор Intel486 способен выполнять несколько своих команд за один период тактовой частоты, однако предыдущие семейства процессоров фирмы Intel требовали множество циклов тактовой частоты для выполнения одной команды.
Возможность выполнять множество команд за один период тактовой частоты существует благодаря тому, что Pentium процессор имеет два конвейера, которые могут выполнять две инструкции одновременно. Так же, как и Intel486 с одним конвейером, двойной конвейер Pentium процессора выполняет простую команду за пять этапов: предварительная подготовка, первое декодирование (декодирование команды), второе декодирование (генерация адреса), выполнение и обратная выгрузка.
В результате этих архитектурных нововведений, по сравнению с предыдущими микропроцессорами, значительно большее количество команд может быть выполнено за одно и то же время.
Другое важнейшее революционное усовершенствование, реализованное в Pentium процессоре, это введение раздельного кэширования. Кэширование увеличивает производительность посредством активизации места временного хранения для часто используемого программного кода и данных, получаемых из быстрой памяти, заменяя по возможности обращение ко внешней системной памяти для некоторых команд. Процессор Intel486, например, содержит один 8-KB блок встроенной кэш-памяти, используемой одновременно для кэширования программного кода и данных.
Проектировщики фирмы Intel обошли это ограничение использованием дополнительного контура, выполненного на 3.1 миллионах транзисторов Pentium процессора (для сравнения, Intel486 содержит 1.2 миллиона транзисторов) создающих раздельное внутреннее кэширование программного кода и данных. Это улучшает производительность посредством исключения конфликтов на шине и делает двойное кэширование доступным чаще, чем это было возможно ранее. Например, во время фазы предварительной подготовки, используется код команды, полученный из КЭШа команд. В случае наличия одного блока кэш-памяти, возможен конфликт между процессом предварительной подготовки команды и доступом к данным. Выполнение раздельного кэширования для команд и данных исключает такие конфликты, давая возможность обеим командам выполняться одновременно. Кэш-память программного кода и данных Pentium процессора содержит по 8 KB информации каждая, и каждая организована как набор двухканального ассоциативного КЭШа - предназначенная для записи только предварительно просмотренного специфицированного 32-байтного сегмента, причем быстрее, чем внешний кэш. Все эти особенности расширения производительности потребовали использования 64-битовой внутренней шины данных, которая обеспечивает возможность двойного кэширования и суперскалярной конвейерной обработки одновременно с загрузкой следующих данных. Кэш данных имеет два интерфейса, по одному для каждого из конвейеров, что позволяет ему обеспечивать данными две отдельные инструкции в течение одного машинного цикла. После того, как данные достаются из КЭШа, они записываются в главную память в режиме обратной записи. Такая техника кэширования дает лучшую производительность, чем простое кэширование с непосредственной записью, при котором процессор записывает данные одновременно в кэш и основную память. Тем не менее, Pentium процессор способен динамически конфигурироваться для поддержки кэширования с непосредственной записью.
Таким образом, кэширование данных использует два различных великолепных решения: кэш с обратной записью и алгоритм, названный MESI (модификация, исключение, распределение, освобождение) протокол. Кэш с обратной записью позволяет записывать в кэш без обращения к основной памяти в отличие от используемого до этого непосредственного простого кэширования. Эти решения увеличивают производительность посредством использования преобразованной шины и предупредительного исключения самого узкого места в системе. В свою очередь MESI-протокол позволяет данным в кэш-памяти и внешней памяти совпадать - великолепное решение в усовершенствованных мультипроцессорных системах, где различные процессоры могут использовать для работы одни и те же данные.
Блок предсказания правильного адреса перехода - это следующее великолепное решение для вычислений, увеличивающее производительность посредством полного заполнения конвейеров командами, основанное на предварительном определении правильного набора команд, которые должны быть выполнены.
Pentium процессор позволяет выполнять математические вычисления на более высоком уровне благодаря использованию усовершенствованного встроенного блока вычислений с плавающей запятой, который включает восьмитактовый конвейер и аппаратно реализованные основные математические функции. Четырехтактовые конвейерные команды вычислений с плавающей запятой дополняют четырехтактовую целочисленную конвейеризацию. Большая часть команд вычислений с плавающей запятой могут выполняться в одном целочисленном конвейере, после чего подаются в конвейер вычислений с плавающей запятой. Обычные функции вычислений с плавающей запятой, такие как сложение, умножение и деление, реализованы аппаратно с целью ускорения вычислений.
В результате этих инноваций, Pentium процессор выполняет команды вычислений с плавающей запятой в пять раз быстрее, чем 33-МГц Intel486 DX, оптимизируя их для высокоскоростных численных вычислений, являющихся неотъемлемой частью таких усовершенствованных видеоприложений, как CAD и 3D-графика.
Pentium процессор снаружи представляет собой 32-битовое устройство. Внешняя шина данных к памяти является 64-битовой, удваивая количество данных, передаваемых в течение одного шинного цикла. Pentium процессор поддерживает несколько типов шинных циклов, включая пакетный режим, в течение которого происходит порция данных из 256 бит в кэш данных и в течение одного шинного цикла.
Шина данных является главной магистралью, которая передает информацию между процессором и подсистемой памяти. Благодаря этой 64-битовой шине данных, Pentium процессор существенно повышает скорость передачи по сравнению с процессором Intel486 DX - 528 MB/сек для 66 МГц, по сравнению со 160 MB/сек для 50 МГц процессора Intel486 DX. Эта расширенная шина данных способствует высокоскоростным вычислениям благодаря поддержке одновременной подпитки командами и данными процессорного блока суперскалярных вычислений, благодаря чему достигается еще большая общая производительность Pentium процессора по сравнению с процессором Intel486 DX.
Давая возможность разработчикам проектировать системы с управлением энергопотреблением, защитой и другими свойствами, Pentium процессор поддерживаем режим управления системой (SMM), подобный режиму архитектуры Intel SL.
Вместе со всем, что сделано нового для 32-битовой микропроцессорной архитектуры фирмы Intel, Pentium процессор сконструирован для легкой наращиваемости с использованием архитектуры наращивания фирмы Intel. Эти нововведения защищают инвестиции пользователей посредством наращивания производительности, которая помогает поддерживать уровень продуктивности систем, основанных на архитектуре процессоров фирмы Intel, больше, чем продолжительность жизни отдельных компонентов. Технология наращивания делает возможным использовать преимущества большинства процессоров усовершенствованной технологи в уже существующих системах с помощью простой инсталляции средства однокристального наращивания производительности. Например, первое средство наращивания - это OverDrive процессор, разработанный для процессоров Intel486 SX и Intel486 DX, использующий технологию простого удвоения тактовой частоты, использованную при разработке микропроцессоров Intel486 DX2.
Первые модели процессора Pentium работали на частоте 60 и 66 МГц и общались со своей внешней кэш-памятью второго уровня по 64-битовой шине данных, работающей на полной скорости процессорного ядра. Hо если скорость процессора Pentium растет, то системному разработчику все труднее и дороже обходится его согласование с материнской платой. Поэтому быстрые процессоры Pentium используют делитель частоты для синхронизации внешней шины с помощью меньшей частоты. Hапример, у 100 МГц процессора Pentium внешняя шина работает на 66 МГц, а у 90 МГц - на 60 МГц. Процессор Pentium использует одну и ту же шину для доступа к основной памяти и к периферийным подсистемам, таким как схемы PCI.

Intel Pentium II (произносится: Интел Пентиум два) - процессор архитектуры x86, анонсированный 7 мая 1997 года. Ядро Pentium II представляет собой модифицированное ядро P6 (впервые использованное в процессорах Pentium Pro). Основными отличиями от предшественника являются увеличенный с 16 до 32 Кб кэш первого уровня и наличие блока SIMD-инструкций MMX (появившихся немногим ранее в Pentium MMX), повышена производительность при работе с 16-разрядными приложениями. В системах, построенных на базе процессора Pentium II, повсеместное применение нашли память SDRAM и шина AGP.

Процессор Pentium II представляет собой картридж SECC или SECC2 (отличающийся более простой конструкцией), содержащий процессорную плату («субстрат») с установленными на ней ядром процессора, микросхемами кэш-памяти BSRAM и tag-RAM. Кэш-память второго уровня работает на половине частоты ядра. Процессор предназначен для установки в 242-контактный щелевой разъём Slot 1.
Существует также вариант Pentium II OverDrive в корпусе PGA (устанавливается в гнездовой разъём Socket 8) с полноскоростным кэшем второго уровня, предназначенный для замены Pentium Pro.Первые процессоры Pentium II (Klamath) были предназначены для рынка настольных персональных компьютеров и производились по 350 нм техпроцессу. Дальнейшим развитием семейства десктопных Pentium II стало 250 нм ядро Deschutes. Через некоторое время вышли процессоры Mobile Pentium II, предназначенный для установки в ноутбуки, и Xeon, ориентированный на высокопроизводительные системы и серверы. На базе ядра Deschutes выпускались также процессоры Celeron (Covington), предназначенные для использования в недорогих компьютерах. Они представляли собой Pentium II, лишённый картриджа и кэша второго уровня.

Процессоры Pentium III с тактовыми частотами 766, 800, 850, 866 и 1 ГГц (1000 MГц) и выше, являлись самыми совершенными и наиболее мощными процессорами корпорации Intel (до выпуска процессоров Intel Pentium 4) для настольных ПК и обладали производительностью Internet-приложений следующего поколения, а также качеством, надежностью и совместимостью.
Процессор Pentium III идеально соответствует требованиям активных пользователей ПК, любителей компьютерных игр и Internet. Этот процессор полностью реализует мультимедийные возможности ПК, прежде всего, в области работы полноэкранного видео и высококачественной графики и восприятия Internet. В процессоре Pentium III воплощено все лучшее от процессоров Intel® и реализованы новейшие технологии. Среди них, в частности, 70 новых команд, обеспечивающих широкие возможности при работе с новым программным обеспечением и путешествиях по Internet.
Поставляемые версии процессоров имеют тактовую частоту системной шины либо 133 МГц, либо 100 МГц и поддерживают работу с чипсетами Intel R 840, 820, 815, 810e, 440GX и 440BX и их аналогами.
Процессоры Pentium III доступны в двух различных типах корпусов: Картридж с одним рядом контактов типа 2 (Single Edge Contact Cartridge 2 - S.E.C.C .2) и Корпус с перевернутым кристаллом и с матрицей штырьковых выводов (Flip-Chip Pin Grid Array - FC-PGA). Корпус FC-PGA разработан для нового поколения персональных компьютеров с низким профилем корпуса.
Pentium III процессор имеет два отдельных 16 КБ-х кэша первого уровня (L1), один для команд и один для данных. Кэш L1 обеспечивает быстрый доступ к недавно использованным данным, увеличивая общие эксплуатационные показатели системы. 256 КБ-й кэш второго уровня (L2) с улучшенной передачей данных (Advanced Transfer Cache-ATC). Кэш ATC содержит ряд микро архитектурных усовершенствований, для обеспечения более скоростного интерфейса между кэшем L2 и ядром процессора, и работает с частотой ядра процессора. Особенностью ATC является:
Не блокирующий, полно скоростной кэш второго уровня
Ассоциативность набора с 8 путями
256-разрядная шина данных
Интерфейс с уменьшенным временем ожидания по сравнению с дискретными кэшами

Pentium 4 (произносится: Пентиум четыре) - x86-совместимый процессор, разработанный Intel. Микроархитектура процессора была полностью изменена, по сравнению с предыдущими поколениями процессоров. Новая микроархитектура получила новое название - NetBurst. Оригинальный Pentium 4 носил кодовое имя «Willamette», работал на частотах 1,4 и 1,5 ГГц и был анонсирован 20 ноября 2000 года (изначально анонс был запланирован на октябрь, однако дата анонса была перенесена) и предназначался для установки в разъём Socket 423. Первые процессоры, основанные на новой архитектуре, вызвали множество нареканий. Во-первых - это производительность, производительность Pentium 4 была ниже чем у Pentium III, работающего на частоте в 1,5 раза меньшей. Во-вторых, для работы нового процессора требовалась материнская плата, основанная на чипсете i850, которая стоили весьма недёшево. В-третьих, все материнские платы предназначались для работы с дорогой памятью Rambus (RDRAM). В-четвертых, для работы материнской платы требовалась замена блока питания, а иногда и корпуса.
За более чем 5 лет было выпущено множество ядер и моделей Pentium 4, основанных на них. Причем с выходом новой модели к названию процессора добавлялись либо новая буква, либо еще какие-нибудь цифры, а иногда и то, и другое; всё это существенно запутывает идентификацию конкретной модели.
Процессор Pentium 4 построен на совершенной новой архитектуре - NetBurst. Ниже приведены некоторые отличительные особенности оригинальной архитектуры NetBurst (некоторые из них в последующем были изменены).
Конвейер. Длина конвейера была увеличена до 20 шагов, то есть для завершения одной команды процессору требовалось 20 циклов. Данный шаг позволял значительно легче наращивать тактовую частоту, кроме того, в перспективе это позволяло значительно повысить быстродействие, но производительность в расчете на 1 МГц была меньше, чем у предыдущих процессоров. Отчасти этим объясняется низкая производительность Pentium 4, работающего на низких частотах. Так же в результате такого нововведения увеличилось и время ожидания.
Модуль предсказания переходов (ветвлений). Чтобы компенсировать недостатки применения длинного конвейера инженеры Intel улучшили схему предсказания ветвлений, в результате правильность перехода предсказывалась с вероятностью до 95 %.
Системная шина. В Pentium 4 используется совершенно новая 128-битная системная шина с двумя 64-битными линиями. Частота новой шины(FSB) составляет 100 МГц (у последних, тогда, моделей Pentium III она составляла 133 МГц), однако за счет передачи за 1 такт одновременно 4 пакетов (QPB - Quad Pumped Bus), эффективная частота шины составляла 400 МГц, а пропускная способность шины составляла 3200 Мб/с.
Арифметико-логическое устройство (АЛУ или ALU). В АЛУ обрабатываются целочисленные команды. В новом процессоре АЛУ работает на удвоенной частоте ядра (у Pentium 4 1,5ГГц АЛУ работает на частоте 3 ГГц за счет использования обоих фронтов сигнала). Таким образом, некоторые инструкции выполняются за половину такта. В Pentium 4 используются два АЛУ.
Кэш-память первого уровня (L1). Как и прежде кэш L1 разделен на две части: для команд и для данных. В кэше теперь хранятся декодированные команды и располагаются в порядке их выполнения (технология Trace Cache), что увеличивает производительность.
Математический Сопроцессор (FPU). Математический сопроцессор содержит два модуля для операций с плавающей запятой. Но реальную вычислительную работу выполняет лишь один модуль - это операции сложения (FADD) и умножения (FMUL), второй модуль выполняет операции обмена между регистрами и памятью (FSTORE). Для процессора Pentium 4 1,4 ГГц сопроцессор обеспечивает производительность в 1,4 GFLOPS. К примеру, в процессорах Athlon используется сопроцессор, состоящий из трех модулей (один для операций типа FSTORE, два других для операций типа FADD и FMUL) и обеспечивающий производительность в 2 GFLOPS (для процессора Athlon 1 ГГц).
SIMD-расширения. В процессор Pentium 4 был добавлен новый набор SIMD-расширений (SSE2), который добавил 144 новые инструкции (68 целочисленных инструкций и 76 инструкций для вычислений с плавающей запятой).

Серия процессоров Intel Pentium 4 является наиболее удачной, если сравнивать с другими модификациями разработчика, так как на протяжении многих лет работы было доказано право на ее существование. В представленной статье можно узнать о том, чем отличаются данные процессоры, ознакомиться с их техническими характеристиками.


Благодаря результатам проведенного тестирования и отзывам можно определиться с выбором.

Гонка за частотами

Поколения процессоров постоянно сменяются одно за другим за счет гонке разработчиков за частотами. Конечно, появились и новые технологии, однако были не на первом плане. Таким образом, не только пользователи, но и производители прекрасно понимали, что в один прекрасный день будет достигнута эффективная частота процессора. Это произошло после выхода в свет четвёртого поколения Intel Pentium.

Частота функционирования одного ядра в 4 GHz стала пределом. Это произошло по той причине, что кристаллу для работы необходимо было много электроэнергии. Таким образом, рассеиваемая мощность в форме колоссального тепловыделения поставила под сомнение функционирование всей системы. Дальнейшие модификации процессоров Intel и аналоги соперников стали производиться в районе 4 ГГц. Следует также упомянуть про технологии, в которых использовалось нескольких ядер, а также о внедрении специальных инструкций, способных оптимизировать работу по обработке данных.

Первый блин комом

В области высоких технологий монополия на рынке не привела ни к чему хорошему. Это подтверждают многочисленные производители электроники, которые смогли убедиться в этом на собственном опыте. Но компании Intel и Rambus приняли решение хорошо заработать. В результате был выпущен совместный продукт, подающий большие надежды. Таким образом, свет увидел первый процессор Intel Pentium 4, работающий на Socket 423 и на достаточно высокой скорости общался с оперативной памятью Rambus. В результате многие пользователи захотели стать обладателями этого быстрого компьютера. Правда, эти две компании так и не стали монополистами на рынке.

Этому стало помехой открытие двухканального режима памяти. Результаты проведенного тестирования показали высокий прирост производительности. Таким образом, новой технологией сразу заинтересовались все разработчики компьютерных комплектующих. А Что касается первого процессора Pentium 4, он и сокет 423 стали историей, так как производителем не была обеспечена платформа возможностью модернизации. На сегодняшний день комплектующие под данную платформу являются востребованными. Оказывается, несколько государственных предприятий закупили сверхбыстрые компьютеры. Таким образом, замена комплектующих несколько дешевле полного апгрейда.

Шаг в правильном направлении

Большинство обладателей персональных компьютеров, играющих в игры и предпочитающих работать с документацией и смотреть мультимедиа контент, имеют установленный Intel Pentium 4 (Socket 478). Многие тесты, которые были проведены профессионалами и энтузиастами, свидетельствуют о том, что мощности этой платформы вполне хватает для выполнения всех задач, поставленных перед рядовым пользователем. Такая платформа задействует две модификации ядер:

Willamette;
Prescott.

Их характеристики свидетельствуют о том, что отличия между двумя процессорами небольшие. Последняя модификация предусматривает поддержку 13 новых инструкций, предназначенных для оптимизации данных, которые получили краткое название SSE3. Частотный диапазон функционирования кристаллов пребывает в промежутке 1,4-3,4 ГГц, что вполне удовлетворяет требования рынка. Разработчик пошел на риск и ввел дополнительную ветку процессоров под сокет 478. Данные устройства должны были привлечь внимание ценителей игр и оверлокеров. Новая серия стала называться Intel Pentium 4 CPU Extreme Edition.

Плюсы и минусы 478 сокета

Отзывы ИТ-специалистов свидетельствуют о том, что процессор Intel Pentium 4, который функционирует на платформе 478 сокета, до сих пор считается востребованным. Далеко не каждый пользователь может позволить себе модернизацию, требующую покупки трёх базовых комплектующих. Стоит отметить, что для решения многих задач, предназначенных для улучшения производительности всей системы, стоит просто установить более мощный кристалл. Хорошо, что вторичный рынок ими переполнен, так как процессор долговечнее даже материнской платы.

Если разрабатывать апгрейд, первостепенное внимание следует уделить наиболее мощным представителям этой категории Extreme Edition, которые сегодня показывают высокие результаты при проведении проверки на производительность. В качестве минусов процессоров под Socket 478 стоит выделить рассеиваемую мощность, требующую достойного охлаждения. Таким образом, к расходам пользователя добавляется и потребность покупки достойного кулера.

Процессоры по низкой стоимости

Наверняка, многие пользователи сталкивались с моделями процессоров Intel Pentium 4, представленными на рынке. Они имеют в маркировке надпись Celeron. Данные устройства являются младшей линейкой агрегатов, которые обладают меньшей мощностью благодаря уменьшению инструкций, а также отключения блоков внутренней памяти микропроцессора (кэш). Intel Celeron предусмотрен для пользователей, которым важна в первую очередь стоимость компьютера, а не его производительность. Многие владельцы подобных устройств высказывают мнение, что младшая линейка процессоров считается отбраковкой в ходе производства кристаллов Intel Pentium 4.

Это предположение возникло на рынке в 1999 году, когда некоторые энтузиасты доказали, что Pentium 2 и его младшая модель Celeron представляют собой один и тот же процессор. Правда, за прошлые годы ситуация сильно изменилась. Теперь разработчик обладает отдельной линией по выпуску сравнительно дешевого устройства, предназначенного для нетребовательных покупателей. Кроме того, стоит помнить о том, что существует еще конкурент AMD, претендующий на вытеснение компании Intel с рынка. Таким образом, все ценовые ниши должны быть заняты высококачественной продукцией.

Новый виток эволюции

Большинство специалистов, работающих в области компьютерных технологий, имеют мнение, что именно возникновение на рынке процессора Intel Pentium 4 Prescott ознаменовало начало эпохи устройств с несколькими ядрами, а также завершило гонку за гигагерцами. С внедрением новых технологий разработчику потребовалось перейти на сокет 775, который и позволил раскрыть потенциал персональных компьютеров в работе с программами и динамическими играми, нуждающимися в больших объемах ресурсов.

Данные статистики свидетельствуют о том, что более 50% всех устройств, существующих на планете, способны работать на легендарном разъёме Socket 775, представленном компанией Intel. Выход процессора Intel Pentium D вызвал ажиотаж на рынке, так как у разработчика на одном ядре получалось запустить два потока инструкций, создавая тем самым прообраз двухъядерного устройства.

Данная технологи стала называться Hyper-threading. На сегодняшний день она является передовым решением в процессе производства кристаллов, обладающих высокой мощностью. Не стала останавливаться на достигнутом компания Intel и презентовала технологии Dual Core, Core 2 Duo и Core 2 Quad, имеющие на аппаратном уровне по несколько микропроцессоров на одном кристалле.

Двуликие процессоры

Если взять ориентир на критерий «цена-качество», то в преимуществе оказываются процессоры, имеющие два ядра. Они отличаются такими важными характеристиками, как низкая себестоимость и высокая производительность. Микропроцессоры Intel Pentium Dual Core и Core 2 Duo считаются наиболее продаваемыми в мире. Основное отличие заключается в том, что последний обладает двумя физическими ядрами, работающими независимо друг от друга. Что касается процессора Dual Core, он выполнен в виде двух контроллеров, установленных на одном кристалле, совместная работа которых неразрывно связана между собой.

Правда, частотный диапазон устройств, обладающих двумя ядрами, слегка занижен и находится в промежутке 2-2,66 ГГц. Основная проблема заключается в рассеиваемой мощности кристалла. Он довольно сильно нагревается на повышенных частотах. В качестве примера можно привести восьмую линейку Intel Pentium D (D820-D840). Они первыми получили два раздельных ядра, а также рабочие частоты, превышающие 3 ГГц. Потребляемая мощность данных процессоров достигает около 130 Вт.

Перебор с четырьмя ядрами

Усовершенствованные устройства, имеющие четыре ядра ядрами Intel(R) Pentium(R) 4 были рассчитаны на потребителей, которые стремятся приобрести комплектующие с запасом на будущее. Но рынок программного обеспечения вдруг остановился. Таким образом, разработка, тестирование, а также внедрение приложений осуществляется для оборудования, которые имеют одно или два ядра максимум. Что же делать с системами, которые обладают 6, 8 и более микропроцессорами?

Это обыкновенный маркетинговый ход, который ориентирован на потенциальных покупателей, желающих приобрести компьютер или ноутбук самой высокой мощности, существующей в мире. Можно провести аналогию с мегапикселями на фотоаппарате – лучшим оказывается не тот, на котором написано 20 Мп, а устройство с большей матрицей и фокусным расстоянием. В процессорах значение имеет набор инструкций, обрабатывающиеся программным кодом приложения. Они и выдают результат пользователю.

Таким образом, программисты должны оптимизировать этот ход, чтобы микропроцессор его без проблем и с высокой скоростью мог обработать. Стоит отметить, что слабых компьютеров на рынке много, поэтому производителям становится выгодно разрабатывать нересурсоёмкие программы. Из этого можно сделать вывод, что большая мощность компьютера на этом этапе эволюции не требуется.

Советы по модернизации

Обладателям процессора Intel Pentium 4 (775 сокет), которые хотят провести модернизацию с минимальными затратами, рекомендуется посмотреть в сторону вторичного рынка. Сначала необходимо ознакомиться с техническими характеристиками материнской платы, установленной в системе. Совершить это легко на официальном сайте разработчика. Там следует найти раздел «поддержка процессоров». Затем в средствах массовой информации нужно отыскать таблицу производительности процессоров, а после этого сравнить ее с характеристиками материнской платы, отобрав несколько оптимальных вариантов. Также необходимо изучить отзывы по выбранным устройствам.

Затем предлагается приступить к поиску требуемого процессора, который уже был в употреблении. Для большинства платформ, где осуществляется поддержка работы микропроцессоров с четырьмя ядрами, желательно устанавливать Intel Core Quad 6600. Когда система способна работать лишь с двухъядерными кристаллами, следует найти серверный вариант Intel Xeon или инструмент, предназначенный для оверлокера Intel Extreme Edition. Их цена на рынке пребывает в промежутке 800-1000 рублей, что значительно дешевле любого апгрейда.

Рынок мобильных устройств

Кроме стационарных компьютеров, процессоры Intel Pentium 4 могут быть установлены на ноутбуки. Для этого разработчики предусмотрели отдельную линейку, которая в собственной маркировке содержала букву «М». Что касается характеристик мобильных процессоров, они были аналогичны стационарным компьютерам. Правда, наблюдался заниженный частотный диапазон. Таким образом, наибольшей мощностью среди процессоров для ноутбуков обладает Pentium 4M 2,66 ГГц. Хотя, с развитием платформ в мобильных версиях настолько все напутано, что даже сам разработчик Intel до сегодняшнего дня не предоставил дерево развития процессоров на собственном официальном сайте.

С применением 478-контактной платформы в ноутбуках компания изменяла только технологию обработки процессорного кода. Как результат, на одном сокете получается развести множество процессоров. Наибольшей популярностью, о чем свидетельствуют данные статистики, пользуется кристалл Intel Pentium Dual Core. Стоит отметить, что он является самым дешёвым устройством в производстве, а его рассеиваемая мощность достаточно мала, если сравнивать с аналогами.

Гонка за энергосбережением

Следует заметить, что для компьютеров потребляемая процессором мощность не считается критичной для системы. В ситуации с ноутбуком дело обстоит несколько иначе. В данном случае устройства Intel Pentium 4 вытеснены менее энергозависимыми микропроцессорами. Если пользователь ознакомится с тестами мобильных процессоров, он сможет убедиться, что по производительности старый Core 2 Quad, входящий в линейку Pentium 4, не особо отстаёт от современного кристалла Core i5. Что касается энергопотребления последнего, оно в 3,5 раза меньше. Таким образом, различие отражается на автономности работы устройства. Если проследить за рынком мобильных процессоров, легко определить, что разработчик снова вернулся к технологиям, которые были популярны в прошлом десятилетии.

За немногим более чем 10 лет своего существования процессоры Pentium фирмы Intel прошли огромный путь. Только тактовая частота возросла более чем в 53 раза, с 60 МГц до 3200 МГц. Также Intel является автором многих разработок, которые уже потом, использовали такие компании как AMD и VIA.

Всего за эти 10 лет были выпущены следующие семейства процессоров:

  • 1993 год - Intel Pentium
  • 1995 год - Intel Pentium PRO
  • 1997 год - Intel Pentium MMX
  • 1997 год - Intel Pentium II
  • 1999 год - Intel Pentium !!!
  • 2000 год - Intel Pentium 4

А теперь рассмотрим каждое из них подробнее.

Все началось 22-го марта 1993 года. Именно тогда Intel представляет первые процессоры под торговой маркой Pentium , которая на долгие годы стала синонимом слова процессор.

Это был первый процессор с двухконвейерной структурой. Носил кодовое имя P5 . Имел тактовые частоты 60 и 66 МГц. Частота шины совпадала с тактовой частотой процессора. Процессоры содержали более 3.1 млн. транзисторов и выпускались по технологии 0.80 мкм, а позже – 0.60 мкм. Размер кэша первого уровня L1 составлял 16 Кб - 8 Кб на данные и 8 Кб на инструкции, в то время как кэш второго уровня размещался на материнской плате и мог иметь объем до 1 Мб. Процессор выпускался для разъема Socket 4.

Через год, в марте 1994 года Intel выпускает второе поколение Pentium (ядро P54 ).

Процессор имел частоты от 75 до 200 МГц. Частота шины 50-66 МГц. Размер кэша L1 остался прежним – 16 Кб (8 Кб на данные и 8 Кб на инструкции). Кэш второго уровня остался на материнской плате, и мог иметь объем до 1 Мб. При производстве этого процессора Intel применяет более совершенный техпроцесс 0.50 мкм. Процессор содержал более 3.3 млн. транзисторов. Выпускался для разъема Socket 5, позднее Socket 7.

Pentium PRO

1 ноября 1995 года, выпуском процессора Pentium PRO (кодовое имя P6 ), начался отсчет шестого поколения процессоров. От предыдущего поколения их отличало применение технологии динамического исполнения - изменения порядка исполнения инструкций и архитектура двойной независимой шины. Добавилась еще одна шина, которая соединяет процессор с кэшем второго уровня, который встроен в ядро. В результате этого впервые был применен кэш L2, работающий на частоте процессора. Первоначальный размер кэша L2 – 256 Кб; к 18 августа 1997 году достиг 1024 Кб. Максимальный размер – 2048 Кб. Кэш первого уровня остался прежним: 8 Кб + 8 Кб. Имел тактовые частоты 150, 166, 180, 200 МГц.

Процессоры Pentium PRO выпускались в корпусах SPGA (Staggered Pin Grid Array) с матрицей штырьковых выводов. В одном корпусе было установлено два кристалла – ядро процессора и кэш второго уровня собственного изготовления. Устанавливался в Socket 8 с возможностью объединить до 4-х процессоров для симметричной мультипроцессорной обработки. Шина 60-66 МГц. При 32-битных вычислениях и многозадачности значительно превосходил по производительности Pentium, но в 16-битных приложениях проигрывал ему. Процессор 150 МГц производился с использованием техпроцесса 0.60 мкм, более старшие модели – 0.35 мкм. Pentium PRO состоял из более чем 5.5 млн. транзисторов, плюс от 15.5 до 31 млн. включал кэш. Pentium MMX

8 января 1997 года произошел выпуск процессора Pentium w/MMX technology (кодовое имя P55 ), являющийся продолжением линейки Pentium, в котором впервые был реализован новый набор из 57 команд MMX (Multi Media eXtention), существенно увеличивающий производительность компьютера в мультимедиа-приложениях (от 10 до 60 %, в зависимости от оптимизации).

Выпускался с тактовыми частотами 166, 200 и 233 МГц. Работал на 66 МГц шине. По сравнению с Pentium, был вдвое увеличен размер кэша первого уровня, который составил 32 Кб. Как и в предыдущих версиях был применен раздельный кэш: 16 Кб на данные и 16 Кб на инструкции. Стоит сказать, что такое разделение (и размер) кэша L1 стало своеобразным стандартом на долгие годы. Кэш второго уровня, как и у предшественника, остался на материнской плате, и мог иметь объем до 1 Мб. Процессоры выпускались по 0.35 мкм технологии, и состояли из 4.5 млн. транзисторов. Рассчитан на Socket 7.

Pentium II

Первые процессоры с названием Pentium II появились 7 мая 1997 года. Эти процессоры объединяют архитектуру Pentium PRO и технологию MMX. По сравнению с Pentium Pro удвоен размер первичного кэша (16 Кб + 16 Кб). В процессоре используется новая технология корпусов - картридж с печатным краевым разъемом, на который выведена системная шина: S.E.C.C (Single Edge Contact Cartridge). Выпускался в конструктиве Slot 1, что естественно потребовало апгрейда старых системных плат. На картридже размером 14 x 6.2 x 1.6 см установлена микросхема ядра процессора (CPU Core), несколько микросхем, реализующих вторичный кэш, и вспомогательные дискретные элементы (резисторы и конденсаторы).

Такой подход можно считать шагом назад – у Intel уже была отработана технология встраивания в ядро кэша второго уровня. Но таким образом можно было использовать микросхемы памяти сторонних производителей. В свое время, Intel считала такой подход перспективным на ближайшие 10 лет, хотя через непродолжительное время отказывается от него.

В то же время сохраняется независимость шины вторичной кэш-памяти, которая тесно связана с ядром процессора собственной локальной шиной. Частота этой шины была вдвое меньше частоты ядра. Так что Pentium II имел большой кэш, работающий на половинной частоте процессора.

Первые процессоры Pentium II (кодовое название Klamath ), появившиеся 7 мая 1997 года, насчитывали около 7.5 млн. транзисторов только в процессорном ядре и выполнялись по технологии 0.35 мкм. Они имели тактовые частоты ядра 233, 266 и 300 МГц при частоте системной шины 66 МГц. При этом вторичный кэш работал на половинной частоте ядра и имел объем 512 Кб. Для этих процессоров был разработан Slot 1, по составу сигналов сильно напоминающий Socket 8 для Pentium Pro. Однако Slot 1 позволяет объединять лишь пару процессоров для реализации симметричной мультипроцессорной системы, либо системы с избыточным контролем функциональности (FRC). Так что этот процессор представляет собой более быстрый Pentium Pro с поддержкой MMX, но с урезанной поддержкой мультипроцессорности.

26 января 1998 году вышел процессор из линейки Pentium II с названием ядра – Deschutes . От Klamath отличался более тонким технологическим процессом – 0.25 мкм и частотой шины 100 МГц. Имел тактовые частоты 350, 400, 450 МГц. Выпускался в конструктиве S.E.C.C, который в старших моделях был сменен на S.E.C.C.2 - кэш с одной стороны от ядра, а не с двух, как в стандартном Deschutes и измененное крепление кулера. Последнее ядро, официально применявшееся в процессорах Pentium II, хотя последние модели Pentium II 350-450 шли с ядром, уже больше напоминавшим Katmai - только, естественно, с обрезанным SSE. Осталась поддержка MMX. Кэш первого уровня – все те же 32 Кб (16 + 16). Кэш второго уровня также не изменился – 512 Кб работающие на половинной частоте. Процессор состоял из 7.5 млн. транзисторов и выпускался для разъема Slot 1.

Pentium II OverDrive – так назывался процессор вышедший 11 августа 1998 года для апгрейда Pentium PRO на старых материнских платах, и работающий в разъеме Socket 8).

Носил кодовое имя P6T . Имел частоту 333 МГц. Кэш первого уровня – 16 Кб на данные + 16 Кб на инструкции, кэш второго уровня имел размер 512 Кб и был интегрирован в ядро. Работал на частоте процессора. Шина 66 МГц. Содержал 7.5 млн. транзисторов и производился по техпроцессу 0.25 мкм. Поддерживал набор инструкций MMX.

Новой веткой в направлении технологии микропроцессоров для Intel был выпуск параллельных основным, "облегченных" и удешевленных вариантов. Таковой является серия Celeron . 15 апреля 1998 года был представлен первый процессор, носящий название Celeron и работающий на тактовой частоте 266 МГц.

Кодовое имя Covington . Этот процессор является “обрезанным” Pentium II. Celeron построен на базе ядра Deschutes без кэша второго уровня. Что, конечно же, сказалось на его производительности. Зато разгонялся он просто великолепно (от полутора до двух раз). Если разгон Pentium II ограничивала максимальная частота кэша, то здесь его просто не было!

Celeron работал на шине 66 МГц и повторял все основные характеристики своего предка – Pentium II Deschutes: кэш первого уровня – 16 Кб + 16 Кб, MMX, техпроцесс 0.25 мкм. 7.5 млн. транзисторов. Процессор выпускался без защитного картриджа - конструктив – S.E.P.P (Single Edge Pin Package). Разъем - Slot 1.

Начиная с частоты 300 МГц, появились процессоры Celeron с интегрированным в ядро кэшем второго уровня, работающим на частоте процессора, размером 128 Кб. Кодовое имя – Mendocino . Вышел 8 августа 1998. Благодаря полноскоростному кэшу имеет высокую производительность, сравнимую с Pentium II (при условии одинаковой частоты системной шины). Выпускались с тактовыми частотами от 300 до 533 МГц. 30 ноября 1998 года, вышел вариант процессора с конструктивом P.P.G.A (Plastic Pin Grid Array), который работал в разъеме Socket 370.

До 433 МГц выпускался в двух конструктивах: S.E.P.P и P.P.G.A. Некоторое время параллельно существовали Slot-1 (266 - 433 МГц) и Socket-370 (300A - 533 МГц) варианты, в конце концов, первый был плавно вытеснен последним.

Новый Celeron был шагом к Pentium !!!, но так как работал на шине 66 МГц, не мог показать все преимущества интегрированного высокоскоростного кэша. Так как кэш был интегрирован в ядро, значительно увеличилось количество транзисторов, из которых состоит процессор - 19 млн. Техпроцесс остался прежним – 0.25 мкм.

Для мощных компьютеров предназначено семейство Xeon . Pentium II Xeon - серверный вариант процессора Pentium II, пришедший на смену Pentium PRO. Производился на ядре Deschutes и отличался от Pentium II более быстрой (полноскоростной) и более емкой (есть варианты с 1 или 2 Мб) кэш-памятью второго уровня и конструктивом. Выпускался в конструктиве S.E.C.C для Slot 2. Это тоже краевой разъем, но с 330 контактами, регулятором напряжения VRM, запоминающим устройством EEPROM. Способен работать в мультипроцессорных конфигурациях. Был выпущен 29 июня 1998 года.

Кэш второго уровня, как и в Pentium PRO, полноскоростной. Только здесь он находится на одной плате с процессором, а не интегрирован в ядро. Кэш первого уровня – 16 Кб + 16 Кб. Частота шины – 100 МГц. Поддерживал набор инструкций MMX. Процессор работал на частотах 400 и 450 МГц. Выпускался с применением техпроцесса 0.25 мкм. и содержал 7.5 млн. транзисторов.

На этом развитие линейки Pentium II заканчивается. Начиная с Pentium II, Intel выделяет три основных направления в производстве процессоров: Pentium – высокопроизводительный процессор для рабочих станций и домашнего применения, Celeron бюджетный вариант пентиума для офиса или дома, Xeon – серверный вариант, обладающий повышенной производительностью.

Pentium !!!

Первые процессоры с названием Pentium !!! мало чем отличались от Pentium II. Они работали на такой же шине с частотой 100 МГц (позже, с 27 сентября 1999 года, появились модели, работающие на шине 133 МГц), выпускались в конструктиве S.E.C.C. 2 и были рассчитаны на установку в Slot 1.

Кэш память осталась прежней: L1 – 16 Кб + 16 Кб. L2 – 512 Кб, размещенные на процессорной плате, и работающие на половинной частоте процессора. Главным отличием является расширение набора SIMD-инструкций - SSE (Streaming SIMD Extensions). Также расширен набор команд MMX и усовершенствован механизм потокового доступа к памяти. Кодовое имя ядра Katmai . Вышел 26 февраля 1999 года. Процессор работал на частотах 450-600 МГц, содержал 9.5 млн. транзисторов. Также как предшественник - Pentium II Deschutes, выпускался с применением техпроцесса 0.25 мкм.

Coppermine – так называлось следующее ядро процессора Pentium !!!, пришедшее на смену Katmai 25 октября 1999 года. По сути, именно Coppermine является новым процессором, а не доработкой Deschutes. Новый процессор имел полноскоростной интегрированный в ядро кэш второго уровня размером 256 Кб (Advanced Transfer Cache).

Выпускался с использованием техпроцесса 0.18 мкм. Утоньшение технологии с 0.25 до 0.18 мкм позволило разместить на ядре большее число транзисторов и теперь их стало 28 млн., против 9.5 млн. в старом Katmai. Правда, основная масса нововведенных транзисторов относится к интегрированному L2-кэшу. L1 кэш остался без изменений. Поддерживал наборы команд MMX и SSE. Сначала выпускался в конструктиве S.E.C.C. 2, но так как кэш теперь встроен в ядро процессора, процессорная плата оказалась ненужной, и только повышала стоимость процессора. Поэтому вскоре процессоры стали выходить в конструктиве FC-PGA (Flip-Chip PGA). Как и Celeron Mendocino, они работали в разъеме Socket 370.

Правда со старыми материнскими платами была ограниченная совместимость. Так как теперь процессор работал на более высоких тактовых частотах, ядро было расположено сверху, и имело непосредственный контакт с радиатором. Coppermine был последним процессором для Slot 1. Работал на шине 100 и 133 МГц (в названии процессора 133-я шина обозначалась буквой B , например – Pentium !!! 750B). Процессоры с ядром Coppermine работали на тактовых частотах с 533 до 1200 МГц. Первые попытки выпустить процессор на этом ядре с частотой 1113 МГц закончились неудачей, так как он в предельных режимах работал очень нестабильно, и все процессоры с этой частотой были отозваны - этот инцидент сильно подмочил репутацию Intel.

Ядро Tualatin пришло на смену Coppermine 21 июня 2001 года. В это время на рынке уже присутствовали первые процессоры Pentium 4, и новый процессор был предназначен для испытания новой 0.13 мкм. технологии, а также для того чтобы заполнить нишу высокопроизводительных процессоров, так как производительность первых Pentium 4 была довольно низкой. Tualatin - это изначальное название глобального проекта Intel по переводу производства процессоров на 0.13-микронную технологию. Сами процессоры с новым ядром стали первыми продуктами, появившимися в рамках этого проекта.

Изменений в самом ядре немного - добавилась только технология "Data Prefetch Logic". Она повышает производительность, предварительно загружая данные, необходимые приложению в кэш. Кроме этого отличие этих ядер заключается в используемой технологии производства - Coppermine изготавливается по технологии 0.18 мкм, а Tualatin по 0.13 мкм. Разъем для нового процессора остался прежним - Socket 370, а вот конструктив сменился на FC-PGA 2, который использовался в процессорах Pentium 4. От старого FC-PGA он в первую очередь отличается тем, что ядро покрыто теплорассеивающей пластиной, которая также защищает его от повреждения при установке радиатора.

С выпуском Tualatin, линейка Pentium !!! "распалась" на два класса - настольных и серверных процессоров. У первых объем L2-кэша так и остался равным 256 Кб, у вторых - удвоился до 512 Кб; также у настольной версии нового P-III (так называемого Desktop Tualatin) отсутствовала поддержка SMP. Кэш первого уровня – 16 Кб + 16 Кб. Следует сказать, что Desktop Tualatin просуществовал недолго: он поставлялся только крупным сборщикам ПК, и был изъят с рынка, для того чтобы не составлять конкуренцию Pentium 4. А вот Pentium !!!-S, серверная версия процессора, должен был занять нишу мощных серверных процессоров, так как производительности процессоров Xeon уже не хватало, а Pentium 4 не имел поддержки SMP, да и вообще показывал довольно низкую производительность.

Как уже было сказано выше, процессоры Tualatin выпускались с применением более совершенного 0.13 мкм. техпроцесса, работали на шине с частотой 133 МГц и состояли из 44 млн. транзисторов. Поддерживали наборы инструкций MMX и SSE. Процессор работал на частотах от 1 ГГц до 1.33 ГГц (Desktop Tualatin), и от 1.13 ГГц до 1.4 ГГц (серверный вариант).

Совсем недавно я узнал довольно интересную информацию – оказывается Intel разрабатывала процессор, который должен был быть продолжением линейки Pentium !!!. Этот процессор был основан на модернизированном ядре Tualatin с применением 0.13 мкм. техпроцесса. Основными его отличиями от обычного Tualatin, был увеличенный до 1024 Кб. кэш второго уровня и системная шина с частотой 166 МГц! Частоты должны были достигать как минимум 2.0 ГГц. Но Intel, делая ставку на процессор Pentium 4, отказывается от нового Tualatin. Ведь если даже Celeron Tualatin, будучи разогнан до частот порядка 1.7 ГГц, с легкостью конкурирует не только с Celeron Willamette, но и с Pentium 4, то новый Tualatin, оснащенный огромным кэшем и быстрой шиной не оставлял бы им никакого шанса.

После выхода процессоров Pentium !!!, Intel, чтобы не терять позиций на рынке бюджетных процессоров, продолжила выпуск линейки Celeron. Теперь это были абсолютно другие процессоры – Intel повторяет опыт создания первых процессоров с названием Celeron: использует ядро процессора Pentium !!! с обрезанным до 128 кб кэшем второго уровня и медленной шиной 66 МГц.

29 марта 2000 года появляются первые процессоры Celeron на ядре Coppermine 128 или Coppermine Lite .

Как видно из названия, процессор выполнен на ядре Coppermine с вдвое уменьшенным кэшем второго уровня. Как и старший брат - Pentium !!! Coppermine, новый Celeron, имеет набор дополнительных команд SSE, быструю встроенную кэш-память и производится по той же технологической норме (0.18 мкм.), отличаясь только объемом кэша второго уровня - 128 Кб против 256 Кб у Pentium !!! (обиднее всего то, что кэш-то в процессоре физически присутствует, он просто отключен). Работает в том же разъеме Socket 370.

Первые процессоры появились с частотой 566 МГц и работали на шине 66 МГц. Позже, 3 января 2001 года, с выходом 800 МГц версии, Celeron переходит на более быструю 100 МГц шину. Максимальная частота этих процессоров составляла 1100 МГц. Кэш первого уровня: 32 Кб (16 Кб на данные и 16 Кб на инструкции). Процессор состоял из 28.1 млн. транзисторов.

Еще никогда Celeron не был так близок к процессору Pentium. От Pentium !!! Desktop Tualatin он отличался лишь более медленной 100 МГц шиной. В общем, оставив неизменным объем кэша второго уровня и снизив частоту FSB до 100 МГц у ядра Tualatin для desktop применения, Intel выпустила "новый Celeron". Процессоры выпускались с тактовыми частотами от 900 МГц до 1400 МГц, состояли из 44 млн. транзисторов, поддерживали MMX, SSE. Техпроцесс 0.13 мкм. Выпускались в конструктиве FC-PGA 2, для разъема Socket 370.

С выходом Pentium !!! Intel продолжает выпускать серверные процессоры на базе уже нового поколения Pentium. 17 марта 1999 вышел первый процессор из линейки Pentium !!! Xeon.

Кодовое название ядра Tanner . Был построен на базе Pentium !!! Katmai. Содержал 512, 1024 или 2048 Кб полноскоростной кэш памяти второго уровня. Кэш первого уровня - 16 Кб + 16 Кб. Выпускался с частотами 500 и 550 МГц с применением 0.25 мкм. техпроцесса, и состоял из 9.5 млн. транзисторов. Работал на 100 МГц системной шине. Выпускался в конструктиве S.E.C.C для Slot 2. Был предназначен для использования в двух-, четырех-, восьмипроцессорных (и более) серверах и рабочих станциях.

С переходом Pentium !!! на новое ядро 25 октября 1999 года появилась и модификация процессора Xeon с новым ядром Cascades . По сути, это было модернизированное ядро Coppermine. Процессор имел от 256 КБ до 2048 Кб кэш памяти второго уровня, работал на частотах системной шины 100 и 133 МГц (в зависимости от версии). Выпускались процессоры с частотами от 600 до 900 МГц. Процессоры с частотой 900 МГц из первых партий перегревались и их поставки были временно приостановлены. Как и предшественник, Xeon Cascades был рассчитан на установку в разъем Slot 2. Выпускался с применением 0.18 мкм. техпроцесса и состоял из 28.1 млн. транзисторов. Мог работать в двух-, четырех- и восьмипроцессорных серверах и рабочих станциях.

На базе ядра Tualatin процессоры Xeon не выпускались. Их место занял Pentium !!!-S, о котором я рассказывал выше. Процессоры Xeon поддерживали наборы команд MMX и SSE.

Pentium 4

Столкнувшись с множеством проблем при попытке увеличить частоту процессора Pentium !!! на ядре Coppermine выше 1 ГГц, инженеры Intel поняли, что старая архитектура процессоров, не менявшаяся со времен Pentium Pro, требует радикальных изменений. И хотя переход производства на 0.13 мкм поможет Pentium !!! еще около года вполне достойно выполнять свою работу, потенциал этой архитектуры уже практически исчерпан и компания для своих новых 32-х разрядных процессоров разработала новую архитектуру, которую назвала Intel NetBurst Micro-Architecture. Для того чтобы процессоры могли работать на частотах порядка нескольких гигагерц, Intel увеличивает длину конвейера Pentium 4 до 20 ступеней (Hyper Pipelined Technology) за счет чего удалось даже при технологических нормах 0,18 мкм добиться работы процессора на частоте в 2 ГГц. Однако из-за такого увеличения длины конвейера время выполнения одной команды в процессорных тактах также сильно увеличивается. Поэтому компания сильно поработала над алгоритмами предсказания переходов (Advanced Dynamic Execution).

Кэш 1-го уровня в процессоре претерпел значительные изменения. В отличие от Pentium !!!, кэш которого мог хранить команды и данные, Pentium 4 имеет всего 8 Кб кэш данных. Команды, сохраняются в так называемом Trace Cache. Там они хранятся уже в декодированном виде, т.е. в виде последовательности микроопераций, поступающих для выполнения в исполнительные устройства процессора. Емкость этого кэша составляет 12000 микроопераций.

Также в новом процессоре был расширен набор команд - SSE2 . К 70 инструкциям SSE, добавились еще 144 новые инструкции. Одной из множества инноваций была совершенно новая 100 МГц шина, передающая по 4 пакета данных за такт - QPB (Q uad P umped B us), что дает результирующую частоту 400 МГц.

Первым из линейки Pentium 4 был процессор с ядром Willamette 423 .

Появившись 20 ноября 2000 года с частотами 1.4 и 1.5 ГГц, эти процессоры, изготовленные с применением техпроцесса 0.18 мкм, достигли частоты 2 ГГц. Процессор устанавливался в новый разъем Socket 423 и выпускался в конструктиве FC-PGA 2. Состоял из 42 млн. транзисторов.

Кэш 2-го уровня остался прежнего объема - 256 Кб. Ширина шины кэша L2 составляет 256 бит, но латентность кэша уменьшилась в два раза, что позволило добиться пропускной способности кэша в 48 Гб при частоте 1.5 ГГц.

Так как архитектура нового процессора была ориентирована в первую очередь на рост частоты, то неудивительно, что первые процессоры Pentium 4 показывают крайне низкую производительность. В большинстве задач 1.4 ГГц процессор уступал Pentium !!! Coppermine, работающему на частоте 1000 МГц.

Позже, 27 августа 2001 года, появились процессоры с ядром Willamette предназначенные для установки в новый разъем - Socket 478. Процессор повторял все характеристики своего предка, за исключением конструктива - mPGA и разъема Socket 478.

Предыдущий форм-фактор Socket 423 был "переходным" и Intel в дальнейшем не собирается его поддерживать. Размеры процессора уменьшились благодаря тому, что теперь выводы сделаны непосредственно под ядром процессора. Этот процессор, как и предшественник, работал на частотах от 1.4 до 2.0 ГГц.

Northwood – так называется следующее ядро, на котором и по сей день, выпускаются процессоры Pentium 4.

Переход на 0.13 мкм. техпроцесс позволил еще больше наращивать тактовую частоту, и увеличить кэш второго уровня до 512 Кб. Увеличилось и количество транзисторов, которые составляют процессор – теперь их стало 55 млн. Естественно, что осталась поддержка наборов инструкций MMX, SSE и SSE2.

Первые процессоры на ядре Northwood появились 7 августа 2001 года с частотой 2.0 ГГц и частотой системной шины 400 МГц (4 * 100 МГц). На сегодняшний день, процессоры Northwood, работают на частотах от 1.6 до 3.2 ГГц. Чтобы не возникало путаницы с процессорами, работающими на одинаковых частотах, но с разным ядром Intel опять применяет буквенную маркировку. Например, Pentium 1.8A , где буква A указывает на новое ядро и увеличенный кэш второго уровня.

6-го мая 2002 года, Intel выпускает процессор на базе ядра Northwood с частотой системной шины 533 МГц (4 * 133 МГц) и тактовой частотой 2.26 ГГц. Так как модели с частотой шины 400 МГц выпускались с частотами до 2.6 ГГц, то и тут была применена буквенная маркировка. Как и в процессорах Pentium !!! наличие 133 МГц шины обозначалось буквой B . Например, Pentium 4 2.4B .

Но Intel не останавливается на достигнутом, и 14 апреля 2003 года выпускает процессор на все том же ядре Northwood, но уже с частотой системной шины 800 МГц (4 * 200 МГц) и тактовой частотой 3.0 ГГц. Позже, процессоры с 800 МГц системной шиной стали выпускаться с меньшими частотами – от 2.4 ГГц. Для обозначения новой шины в маркировке процессора появляется буква C . Например, Pentium 4 2.4C . (Таким образом, есть три модификации процессора 2.4 ГГц с разными частотами шины, различающимися в 2 раза!)

Все процессоры с частотой системной шины 800 МГц поддерживают новую технологию HT , что расшифровывается как Hyper-Threading .

Pentium 4 HT

14 ноября 2002 года был выпущен процессор Pentium 4 с частотой 3.06 ГГц и частотой системной шины 533 МГц с поддержкой новой технологии Hyper-Threading .

Один физический процессор с Hyper-Threading видится системой как два, что позволяет оптимизировать загрузку его ресурсов и повысить производительность. Принцип действия Hyper-Threading основывается на том, что в каждый момент времени только часть ресурсов процессора используется при выполнении программного кода. Неиспользуемые ресурсы также можно загрузить работой - например, задействовать для параллельного выполнения еще одного приложения (либо другого потока этого же приложения).

HT – это не настоящая многопроцессорность, ведь количество блоков непосредственно исполняющих команды не изменилось. Повысился лишь КПД их использования. Поэтому, чем лучше оптимизирована конкретная программа под HT, тем выше будет выигрыш в производительности. По данным Intel, преимущество от HT может достигать 30%, в то время как блоки, ее реализующие, занимают менее 5% общей площади кристалла Pentium 4. Впрочем, даже идеально оптимизированные приложения могут, к примеру, обращаться к данным, которых нет в кэш-памяти процессора, заставляя его простаивать. Если сама архитектура NetBurst была рассчитана на повышение количества мегагерц, то Hyper-Threading наоборот, рассчитан на повышение выполняемой работы за один такт.

Одной из причин достаточно позднего представления Hyper-Threading в Pentium 4 (поддержка существует не только в ядре Northwood, но даже в Willamette, однако была заблокирована) являлась относительно небольшая распространенность Windows XP – единственной ОС семейства Windows, полноценно поддерживающей новую технологию. Также технологию должен поддерживать чипсет и BIOS системной платы.

На сегодняшний день технологию Hyper-Threading поддерживает процессор Pentium 4 3.06 ГГц с частотой системной шины 533 МГц, а также все процессоры с частотой шины 800 МГц.

После выпуска Pentium 4 Willamette для разъема Socket 478, с целью вытеснения с рынка процессоров для Socket 370, а также, желая занять нишу бюджетных процессоров (где до этого был Celeron Tualatin), Intel выпускает Celeron на базе ядра Willamette 128 .

Ядро Willamette 128 архитектурно ничем не отличается от ядра Pentium 4 Willamette. Организация кэша и алгоритмы его работы не изменились, единственное отличие заключается в размере - 128 Кб кэша второго уровня вместо 256 Кб в оригинальном Pentium 4 Willamette.

Естественно, сохранен и форм-фактор Socket 478, который Intel собирается использовать еще долго. Таким образом, Intel переводит свои процессоры на одну платформу, так что при последующем апгрейде не понадобится менять вместе с процессором и материнскую плату.

15 мая 2002 года появляется первый процессор с названием Celeron, построенный на базе Pentium 4, с частотой 1.7 ГГц. Позже, 12 июня 2002 года появляется версия на 1.8 ГГц.

Новый Celeron, как и раньше, использует 100 МГц системную шину, правда теперь уже с передачей 4-х сигналов за такт. Учетверенная 100 МГц системная шина наконец-то решает старую проблему Celeron - недостаток пропускной способности FSB.

Как и Pentium 4 Willamette, новый Celeron выполнен с применением 0.18 мкм. техпроцесса. Состоит из 42 млн. транзисторов. Выпускается с частотами 1.7 и 1.8 ГГц.

Следующее и последнее на сегодняшний день ядро процессора Celeron, это Northwood (естественно с урезанным до 128 Кб кэшем второго уровня). Первым процессором на этом ядре был Celeron 2.0 ГГц, который вышел 18 сентября 2002 года. Он, как и Celeron Willamette 128, полностью повторяет характеристики старшего брата Pentium 4 Northwood, за исключением шины рассчитанной исключительно на 400 МГц (4 * 100 МГц) и кэша второго уровня размером 128 Кб.

Применение 0.13 мкм. техпроцесса дает преимущество в виде хорошей разгоняемости. У ядра Northwood хороший частотный потенциал (на сегодняшний день до 3.2 ГГц), поэтому запас для разгона есть.

С момента первого выпуска Intel Pentium II Xeon прошло чуть меньше трех лет. И Intel, 21 мая 2001 года, продолжая свой курс по сегментированию своих процессоров, анонсирует процессор Xeon следующего поколения, который базируется на ядре Pentium 4 Willamette. Процессор называется по-старому, Intel Xeon, и выпускается в трех вариантах: 1.4 ГГц, 1.5 ГГц и 1.7 ГГц. Ядро процессора почти полностью идентично обычной (desktop) версии Pentium 4 за исключением незначительных деталей. Это означает, что новый Xeon имеет все то, что есть в Pentium 4 – как достоинства новой архитектуры, так и ее недостатки.

Первые модели Xeon выпускались с применением 0.18 мкм. техпроцесса, с ядром, практически полностью повторявшим Pentium 4 Willamette и носившем кодовое имя Foster . Процессор выпускался с тактовыми частотами до 2,0 ГГц. Состоял из 42 млн. транзисторов.

Кэш память первого уровня, как и у всех процессоров линейки Pentium 4, с архитектурой NetBurst, 8 Кб кэш данных. Кэш второго уровня – 256 Кб с улучшенной передачей данных (256 Кб Advanced Transfer Cache). Также как в Pentium 4 Willamette, в новом Xeon применена 400 МГц системная шина (4 * 100 МГц) которая синхронно работает с двумя каналами памяти на частоте 400 МГц.

Исторически, линейки процессоров Intel Xeon (то есть Pentium II Xeon, Pentium III Xeon) всегда использовали отличный от обычных версий процессора конструктив. В то время как процессоры Pentium II и Pentium III выпускались в 242-контактном Slot1 варианте, то их Xeon версии использовали 330-контактный разъем Slot-2. Большинство добавочных ножек использовалось для снабжения чипа дополнительной энергией. С двумя мегабайтами L2 кэша Pentium III Xeon потреблял больше энергии, чем его 256-килобайтный собрат. Аналогичная ситуация произошла и с новым Xeon. Если первые процессоры Pentium 4 Willamette, используют 423-контактный разъем, то в Xeon применяется 603-контактный интерфейс, предназначенный для использования в разъеме Socket 603. Процессор может работать только в одно- или двухпроцессорных конфигурациях.

9 января 2002 года появляются процессоры Xeon, сделанные на базе ядра Northwood с применением 0.13 мкм. техпроцесса, и оснащенные 512 Кб кэш памяти второго уровня. Кодовое название ядра – Prestonia . От своего предшественника - Xeon Foster, отличается только увеличенным кэшем и более совершенным техпроцессом. Процессоры работают на частотах от 1.8 ГГц, до 3.0 ГГц. Состоят из 55 млн. транзисторов. В процессорах с ядром Prestonia впервые появилась поддержка Hyper-Threading.

12 марта 2002 года, выходит процессор Xeon MP. Изготовлен с применением 0.18 мкм. и оснащен 256 Кб кэш памяти второго уровня. Основное отличие от процессоров Xeon Foster - возможность работать в многопроцессорных системах. Работают на частотах от 1.4 до 1.6 ГГц. Также в этих процессорах осуществлена поддержка технологии Hyper-Threading.

4 ноября 2002 года появляются процессоры Xeon MP, изготовленные с применением 0.13 мкм. техпроцесса. Эти процессоры, работающие на частотах 1.5 ГГц, 1.9 ГГц и 2.0 ГГц отличаются от своего собрата Xeon Prestonia, не только возможностью работы в многопроцессорных конфигурациях, но и наличием интегрированного кэша третьего уровня размером 1 или 2 Мб. Благодаря этому увеличилось количество транзисторов, составляющих процессор до 108 млн.!

18 ноября 2002 года появились процессоры Xeon работающие на 533 МГц (4 * 133 МГц) системной шине. Эти процессоры сделаны на ядре Prestonia, с применением 0.13 мкм. техпроцесса и состоят из 108 млн. транзисторов. Кэш память второго уровня – 512 Кб. Кэш третьего уровня 1 Мб. Процессоры Xeon на 533 МГц шине выпускаются с тактовыми частотами от 2.0 ГГц до 3.06 ГГц (вышел 10 марта 2003). Также недавно был анонсирован 3.2 ГГц процессор.

В конце 2003 года, Intel представит новое ядро для своих процессоров – Prescott . Эти процессоры будут изготавливаться с применением 0.09 мкм. (90 нм) технологии. Ядро Prescott будет состоять из 125 млн. транзисторов, и содержать 1 Мб кэш второго уровня. Также, возможно будет наконец-то увеличен кэш первого уровня до 32 Кб. Естественно, что новое ядро будет обладать поддержкой технологии Hyper-Threading. Только это уже будет Hyper-Threading 2 , дальнейшее развитие «многопроцессорности» в одном чипе. В чем будет заключаться их отличие пока не известно, но есть предположения (никем не подтвержденные) что новинка позволяет в одном физическом процессоре видеть не два, а несколько виртуальных процессоров.

Также будет добавлен новый набор инструкций (или расширен уже присутствующий), включающий 15 новых инструкций по переводу чисел с плавающей запятой в целые, арифметику комплексных чисел, специальные команды для декодирования видео, SIMD-инструкции для формата с плавающей запятой и процесс синхронизации потоков.

Первые процессоры с этим ядром будет работать на частотах 3.2 и 3.4 ГГц. Их корпуса будут совместимы с используемыми сейчас в процессорах Pentium 4 Northwood. В дальнейшем процессоры Prescott будут переведены в новую упаковку LGA 775, содержащую 775 выводов, для которой потребуются и новые материнские платы с разъемом Socket T.

На базе нового ядра будет также продолжен выпуск процессоров линейки Celeron. Только теперь это уже совсем не тот Celeron, что был раньше. Чипы Celeron на ядре Prescott будут быстрее предшественников на Northwood не только за счет возросшей тактовой частоты ядра. Они будут поддерживать системную шину с частотой 533 МГц, а объем их кэша увеличится со 128 до 256 кб. Первые Celeron на ядре Prescott будут иметь частоты 2.8 и 3.06 ГГц. Не успев выпустить процессоры по 90-нм технологии, Intel уже во всю развивает следующее поколение технологии производства чипов – с нормами 65 нм. Также ведутся разработки, и есть работающие чипы изготовленные с применением не только 0.065 мкм. техпроцесса, но и 45 нм, 32 нм и даже 22 нм.

За Prescott последует ядро Tejas с шиной 1066 МГц. На его основе будут представлены восемь различных процессоров с тактовыми частотами от 6 до 9.2 ГГц. Появление в продаже первого из них запланировано на конец 2004 года. После этого компания представит ядро Nehalem , использующее системную шину 1200 МГц и позволяющее получить рабочую частоту свыше 10 ГГц. Nehalem будет основан на совершенно новой архитектуре. Это будет не модернизированный Pentium 4, как Prescott и Tejas. В нем будет применена система аппаратной защиты LaGrande, и по некоторым данным, использована более совершенная технология многопоточной обработки. Число транзисторов в чипе составит порядка 150-250 миллионов. Появиться Pentium Nehalem должны в 2005 году.

Также недавно был объявлен новый процессор из линейки Pentium 4 - Intel Pentium 4 Extreme Edition .

Он оснащен технологией Hyper-Threading, работает на системной шине 800 МГц, имеет тактовую частоту ядра 3.2 ГГц. Но главным его отличием от предшествующих Pentium 4 стало наличие интегрированной в кристалл кэш-памяти третьего уровня L3 объемом 2 Мб! Эта кэш-память дополняет стандартный кэш L2 512 кбайт и работает также на частоте ядра процессора (правда, с гораздо большей латентностью, поскольку она асинхронная и призвана ускорять работу с данными из наиболее часто используемых областей системной памяти). Таким образом, всего новый Pentium 4 Extreme Edition имеет кэш-память объемом 2.5 Мб! А также является единственным desktop процессором с кэшем третьего уровня, интегрированным в ядро.

Процессор Pentium 4 Extreme Edition позиционируется Intel главным образом для игрового рынка, хотя не исключено и его применение в производительных рабочих станциях. Новый процессор использует ядро от мультипроцессорных Xeon MP с интегрированной кэш-памятью L3. Его немного изменили с целью поддержки системной шины 800 МГц, уменьшения энергопотребления и др. и упаковали в стандартный корпус от Pentium 4.

При написании данного материала была использована информация с Интернет сайтов

Алексей Гавриленко aka [-Alex-]


Pentium D 820 Производство: с 2005 по 2008 Производитель: Intel Частота ЦП : 2,66-3,6 ГГц Частота FSB : 533-800 МГц Технология производства:
КМОП , 90-65 нм Наборы инструкций : IA-32 , MMX , SSE , SSE2 , SSE3 , EM64T Микроархитектура : NetBurst Разъём : Socket 775 Ядра :
  • Smithfield
  • Presler

Pentium D (произносится: Пентиум Дэ ) - серия двухъядерных процессоров семейства Pentium 4 компании Intel .

Разработаны Центром исследований и разработок Intel Хайфе (Израиль), впервые продемонстрированы 25 мая 2005 года на весеннем форуме для разработчиков Intel (IDF).

Pentium D имеет микроархитектуру NetBurst , как и все модели Pentium 4 (буква «D», в названии, расшифровывается как Dual - двойной, и указывает на наличие двух ядер). Pentium D стал первым двухъядерным процессором архитектуры x86-64, предназначенным для персональных компьютеров, хотя в апреле 2005 года AMD выпустила двухъядерные процессоры серии Opteron , предназначенные для серверов. Двухъядерные процессоры других архитектур существовали и ранее, например IBM PowerPC -970MP (G5).

На самом деле, AMD заявила о разработке двухъядерных процессоров раньше Intel. Однако, вскоре обнаружились проблемы с повышенным тепловыделением у процессоров Pentium 4. Это заставило Intel сменить политику, и, чтобы первой выпустить двухъядерные процессоры, Intel начала разработку ядра под кодовым названием Smithfield.

Smithfield

Процессоры были анонсированы 25 мая 2005 года. Smithfield разрабатывался в спешке (вскоре после выхода процессора Intel это признала), поэтому процессоры на этом ядре получились не очень удачными. Ядро представляет собой два кристалла Prescott , размещенных на одной подложке. Smithfield, как и Prescott, производился по 90 нм технологии и имел все недостатки ядра Prescott. Чтобы процессор соответствовал требованиям TDP 130 Вт, было решено ограничить максимальную частоту значением 3,2 ГГц, а младшая модель имела частоту 2,6 ГГц. Как известно, архитектура Prescott, ввиду наличия длинного конвейера, очень зависима от частоты, поэтому снижение частоты очень сильно уменьшило производительность.

Кроме того, несмотря на пониженную частоту, наличие двух ядер приводило к очень большому тепловыделению. А ввиду того, что крайне мало программ использовали возможность распределять свои функции на несколько потоков, выгоды от использования двух ядер практически не было. По производительности последние модели на ядре Smithfield значительно отставали от последних моделей на ядре Prescott. Для установки новых процессоров требовалось покупать новую материнскую плату, так как Smithfield имел другие требования к VRM, нежели Prescott. А первые материнские платы для Smithfield работали только с памятью типа DDR2 , которая зачастую была медленнее обычной DDR . Конкурентные процессоры AMD Athlon 64 X2 были лишены практически всех этих недостатков. Всё это привело к тому, что процессоры Pentium D не пользовались популярностью, в отличие от AMD Athlon 64 X2, даже несмотря на то, что они были дешевле процессоров AMD Athlon 64 X2. Smithfield, как и Athlon 64 X2 обладает разделенным кэшем L2 (то есть каждое ядро обладает своим кэшем L2), это значительно упростило разработку, но немного уменьшает производительность процессора, в отличие от общего для обоих ядер кэша L3.

Presler

Ядро Presler производилось по 65 нм технологии, это позволило поднять частоту процессоров, правда, максимальный TDP новых процессоров оставался на уровне 130 Вт (так было до выхода ревизии ядра D0, которая позволила увеличить уровень выхода годных кристаллов. Presler лишен поддержки технологии Hyper-Threading, поддерживает технологию виртуализации Vanderpool, а также C1E, EIST и TM2 (в поздних моделях на степпингах C1 и D0).

Процессоры были анонсированы во второй половине января 2006 года, хотя в японских магазинах были замечены продажи этих CPU в первых числах того же месяца. Серия этих моделей обозначалась как 9x0. Первоначально был запланирован выход моделей с номерами 920, 930, 940 и 950. А в апреле 2006 года вышла модель с номером 960, работающая на частоте 3,6 ГГц. Далее к ним добавились более дешевые модели 915 (2,8 ГГц), 925 (3,0 ГГц), 935 (3,2 ГГц) и 945 (3,4 ГГц), которые лишены поддержки Vanderpool.

Процессор на ядре Presler стал последним в линейке Pentium D. Следующим процессором, построенным на ядре Conroe и на данный момент являющимся одной из наиболее популярных в среднем ценовом сегменте модификацией, стал Intel Core 2 Duo .

В 2007 году линейка Pentium D полностью снята с производства, что вызвано отказом Intel от микроархитектуры NetBurst .

Технические характеристики различных ядер

Данные относящиеся ко всем моделям

  • Разрядность регистров : 64 бита
  • Разрядность внешней шины: 64 бита

Smithfield

  • Дата анонса первой модели: 25 мая 2005 года
  • Выпущенные модели: 805 (2,66 ГГц), 820 (2,8 ГГц), 830 (3,0 ГГц), 840 (3,2 ГГц)
  • Эффективная частота системной шины (FSB) (МГц): 800 (для моделей 820, 830, 840), 533 (для модели 805)
  • Размер кэша L2(для каждого ядра): 1024 Кбайт
  • Номинальное напряжение питания: 1,4 В
  • Количество транзисторов (млн.): 230
  • Площадь кристалла (кв. мм): 206
  • Максимальное TDP: 130 Вт
  • Техпроцесс (нм): 90
  • Разъём: LGA775
  • Поддерживаемые технологии: IA-32 , MMX , SSE , SSE2 , SSE3 , EDB , EM64T

Presler

  • Дата анонса первой модели: январь 2006 года
  • Выпущенные модели: 915 (2,8 ГГц), 920 (2,8 ГГц), 925 (3,0Ггц), 930 (3,0 ГГц), 935 (3,2 ГГц), 940 (3,2 ГГц), 945 (3,4 ГГц), 950 (3,4 ГГц), 960 (3,6 Ггц)
  • Эффективная частота системной шины (FSB) : 800 МГц
  • Размер кэша L1(для каждого ядра): 16 Кбайт (для данных) + 12 тысяч операций
  • Размер кэша L2(для каждого ядра): 2048 Кбайт
  • Номинальное напряжение питания: 1,25 - 1,4 В
  • Количество транзисторов (млн.): 376
  • Площадь кристалла (кв. мм): 140
  • Максимальное TDP: 130 Вт
  • Техпроцесс (нм): 65
  • Разъём: LGA775
  • Корпус: 775-контактный FC-LGA4
  • Поддерживаемые технологии: IA32, MMX, SSE, SSE2, SSE3, EDB, EM64T,

См. также

Ссылки

  • Электротехнические параметры процессоров, в частности Intel Pentium D (англ.)