Нейронные сети или. Нейросети для начинающих – нейронная сеть для чайников. Главное — баланс

Пример программы нейронной сети с исходным кодом на с++.

Про нейронные сети хорошо и подробно написано здесь. Попытаемся разобраться как программировать нейронные сети, и как это работает . Одна из задач решаемых нейронными сетями, задача классификации. Программа демонстрирует работу нейронной сети классифицирующей цвет.

В компьютере принята трехкомпонентная модель представления цвета RGB, на каждый из компонентов отводится один байт. полный цвет представлен 24 битами, что дает 16 миллионов оттенков. Человек же может отнести любой из этих оттенков к одному из имеющих название цветов. Итак задача:

Дано InColor — цвет RGB (24 бит)

классифицировать цвет, т.е. отнести его к одному из цветов заданных множеством М={ Черный, Красный, Зеленый, Желтый, Синий, Фиолетовый, Голубой, Белый }.

OutColor — цвет из множества М

Решение номер 1. (цифровое)

Создаем массив размером 16777216 элементов

Решение номер 2. (аналоговое)

напишем функцию, типа

int8 GetColor(DWORD Color)
{
double Red = (double(((Color>>16)&0xFF)))/255*100;
double Green = (double(((Color>>8)&0xFF)))/255*100;
double Blue = (double((Color&0xFF)))/255*100;
double Level = Red;
if(Green > Level)
Level = Green;
if(Blue > Level)
Level = Blue;
Level = Level * 0.7;
int8 OutColor = 0;
if(Red > Level)
OutColor |= 1;
if(Green > Level)
OutColor |= 2;
if(Blue > Level)
OutColor |= 4;
return OutColor;
}

Это будет работать если задачу можно описать простыми уравнениями, а вот если функция настолько сложна что описанию. не поддается, здесь то на помощь приходят нейронные сети.

Решение номер 3. (нейронная сеть)

Простейшая нейронная сеть. Однослойный перцептрон.

Все нейронное заключено в класс CNeuroNet

Каждый нейрон имеет 3 входа, куда подаются интенсивности компонент цвета. (R,G,B) в диапазоне (0 — 1). Всего нейронов 8, по количеству цветов в выходном множестве. В результате работы сети на выходе каждого нейрона формируется сигнал в диапазоне (0 — 1), который означает вероятность того что на входе этот цвет. Выбираем максимальный и получаем ответ.

Нейроны имеют сигмоидную функцию активации ActiveSigm(). Функция ActiveSigmPro(), производная от сигмоидной функции активации используется для обучения нейронной сетиметодом обратного распространения.

В первой строчке выведены интенсивности цветов. ниже таблица весовых коэффициентов (4 шт.). В последнем столбце значение на выходе нейронов. Меняем цвет, выбираем из списка правильный ответ, кнопкой Teach вызываем функцию обучения. AutoTeach вызывает процедуру автоматического обучения, 1000 раз, случайный цвет определяется по формуле из решения номер 2, и вызывается функция обучения.

скачать исходный код и программу нейронной сети

Программирование искусственных нейронных сетей — я пишу на С++ в объектно-ориентированной парадигме

Для простых нейроархитектур (структур), методов и задач можно использовать любой язык (даже Бэйсик), но для сложных проектов наиболее пригодными оказываются языки объектно-ориентированного программирования (такие, как С++). Я применяю именно С++, при необходимости (в наиболее времязатратных местах программы) переписывая отдельные функции (требующие ускорения вычислений) на инлайн-ассемблере.

Покажем пользу объектно-ориентированного подхода к программированию нейросеток. У нейросети может быть множество вариантов нейронов и/или слоёв (см. заметку про современные возможности собрать свёрточную нейросеть из большого числа разнотипных слоёв и нейронов). Некоторую общую функциональность нейронов или слоёв можно вынести в абстрактный класс-предок, порождая (наследуя) от него классы для тех или иных видов нейронов/слоёв (эти классы-потомки будут описывать-реализовывать уже уникальные для конкретного вида нейрона или слоя особенности и поведение). Таким образом обеспечиваются ликвидация многократного дублирования общих (одинаковых) вещей в тексте программы и возможность написать более гибкий и независимый от конкретных типов нейронов/слоёв управляющий код программы при использовании принципов полиморфизма.

В качестве примера рассмотрим номенклатуру классов для описания слоёв нейросети в одной из разработанных мной программ. Имеется 3 основных иерархии − одна для классов-описателей структуры слоя (цепочка наследования из трёх классов), вторая − для нелинейных функций нейронов (базовый класс и десять наследников от него), третья − для самих слоёв (цепочка из 5 базовых-промежуточных классов и 12 реальных классов, отпочковавшихся от этой цепочки на разных её уровнях).

Нейронные сети

в тексте программы для описания поведения слоёв сети использован (реализован) 31 класс, но при этом всего 12 из них реализуют реальные слои, а остальные классы:

  • либо абстрактные, задающие общее поведение, позволяющие в дальнейшем более просто создавать новых потомков (новые типы слоёв) и повышающие степень инвариантности управляющей логики (реализующей функционирование нейронной сети) к составляющим сеть разнообразным слоям;
  • либо, наоборот, являются подчинёнными и входят в состав слоя в качестве его «компонент» (экземпляр объекта-описателя структуры и характеристик слоя, и экземпляр объекта, реализующего нелинейную функцию нейронов).

Функционирование созданной нейронной сети запрограммировано через обращения к методам и свойствам абстрактных классов, независимо от того, какой конкретно класс-потомок реализует тот или иной слой нейросети.

Т.е. управляющая логика здесь отделена от конкретного содержания и привязана только к общим, инвариантным основам. О конкретных же классах необходимо знать только коду «конструктора» нейросети − работающего только в момент создания новой сети исходя из заданных в интерфейсе настроек или при загрузке ранее сохранённой сети из файла. Добавление новых типов слоёв нейронов в программу не приведёт к переделке алгоритмов (логики) работы и обучения сети − а потребует только небольшого дополнения кода механизмов создания (или чтения из файла) нейросети.

Абстракций (классов) для отдельных нейронов нет — только для слоёв. Если нужно поставить на некотором (а именно — на выходном) слое единственный нейрон — то просто экземпляру класса нужного нейронного слоя при создании передаётся счётчик числа нейронов, равный единице.

Таким образом, объектно-ориентированные проектирование и программирование обеспечивают бОльшую гибкость для реализации принципа «разделяй и властвуй» по сравнению со структурным программированием, через:

  • вынос общих фрагментов кода в классы-предки (принцип наследования),
  • обеспечение необходимого сокрытия информации (принцип инкапсуляции),
  • построение-получение универсальной, независимой от конкретных реализаций классов, внешней управляющей логики (принцип полиморфизма).
  • достижение кросс-платформенности через вынос аппаратно- или платформозависимых частей в классы-потомки (число которых может меняться под каждую конкретную программно-аппаратную реализацию, в то время, как число базовых классов-предков и вся логика высокого уровня будут одинаковы и неизменны).

Для современных задач разработки гибких и мощных инструментов нейромоделирования всё это оказывается очень полезным.

Также см. пост про проекты специальных языков описания ИНС.

нейронные сети,
методы анализа данных:
от исследований до разработок и внедрений

Главная
Услуги
Нейронные сети
базовые идеи
возможности
преимущества
области применения
как использовать

Точность решения
НС и ИИ
Программы
Статьи
Блог
Об авторе / контакты

Тонкая настройка Вселенной — это уникальное сочетание многочисленных свойств Вселенной такое, что только оно и способно обеспечить существование наблюдаемой Вселенной. Даже минимальные отклонения состава или значений этих свойств несовместимы с фактом существования Вселенной.

Обычно понятие тонкой настройки Вселенной рассматривается в слабой формулировке: принимаются во внимание значения всего нескольких мировых констант, и делается вывод только о невозможности существования человечества при их отклонениях. Такой ограниченный подход стимулирует религиозно окрашенные попытки объяснения этого явления, например, антропный принцип , декларирующий богоданную целесообразность Вселенной, заключенную в существовании человека.

Тонкая настройка Вселенной — это самая впечатляющая из аперцепций современной космологии: никакая другая не сравнится с ней по силе и убедительности свидетельства о Большом тупике, о том, что Вселенная устроена категорически не так, как её представляет современная наука, и в рамках этого представления исследует. Не несколько констант, а вообще непредставимо огромный корпус разнообразных фактов, имей любой из них даже небольшое отличие от наблюдаемого, сделал бы невозможным существование жизни и Вселенной. Значения свойств элементарных частиц (массы, заряды, периоды полураспада…), свойства фундаментальных взаимодействий, свойства веществ (да хотя бы воды), — всё это и многое-многое другое тщательно выбрано именно таким, чтобы Вселенная существовала. Любой из миллионов этих фактов, будь он другим, привёл бы её к несуществованию. Или, как минимум (в слабой формулировке) — к невозможности жизни в ней.

Искусственная нейронная сеть

Осознание этого полностью разрушает привычную "научную картину мира" эпохи Большого тупика. Но, как уже сказано, здесь имеет место аперцепция: люди отказываются осознавать это.

Объяснение тонкой настройки в ИТВ

ИТВ устанавливает, что Вселенная состоит только из информации. Наблюдатель наблюдает наблюдаемое, получая информацию — и это всё, что составляет Вселенную. Информация, будучи всего лишь описанием чего-либо, могла бы быть любой возможной, если бы она получалась сама по себе. Однако информация сама по себе ничем не является и ничего описывать не может, для этого всегда нужны некоторые условия, и они ограничивают содержание информации.

Таким образом, Вселенная — это совокупность обусловленных выборов конкретной наблюдаемой информации из широкой гаммы в принципе возможной. Существование Вселенной является финальным критерием всех этих выборов: они таковы постольку, поскольку Вселенная существует, будь они другими — Вселенная не существовала бы.

Это и есть тонкая настройка Вселенной: значения мировых констант и вообще все свойства Вселенной определились фактом существования Вселенной, никто их специально не подбирал, ни из какой единой константы они не выводятся, никакой возможности установить их иной состав и иные значения не существует.

Разбираем нейронную сеть. C#

В данной статье предлагаю разобрать дейтсвие нейронных сетей и накидать один из простейших вариантов нейронной сети, обучающейся при помощи учителя.

Пару слов, необходимо уделить устройству этой самой «великой» и «ужасной» нейронной сети. Долгое количество времени люди ходили взад и вперед и размышляли над вопросом: (в чем смысл жизни?)
Как можно распознавать образы?

Ответов было огромное множество. Тут и различные эвристики, и сравнения по шаблонам и многое-многое. Одним из ответов была нейронная сеть. [К слову сказать нейронная сеть может не только распознавать образы]

Итак. Структура нейронной сети. Представьте себе такую картину: паук сплел сеть и сеть словила муху. То место на которое попала муха и есть нейрон, который был «максимально» близок к цели. Нейронная сеть состоит из нейронов, которые «описывают»
шансы того или иного события. Описание «вероятности» события (каждого нейрона) может храниться (к примеру) в отдельном файле.

Теперь переходим к главной теме разговора этого вечера.

Как устроена нейронная сеть.

Как происходит ее обучение и распознание.

Пример структуры нейронной сети отчеливо виден на этой картинке:

На вход поступает множество входных сигналов X. Которые умножаются на множество весов W (Xi * Wi). В нейроне производится подсчет суммы произведений и на выход отправляется некоторое число.
После подсчета значений у всех нейронов, производится поиск наибольшего значения. Это наибольшее значение и считается корректным ответом на вопрос. Программой выдается образ, который описывается найденным нейроном.
В режиме обучения пользователь имеет возможность подправить результат (основываясь на своем опыте) и тогда программа произведет пересчет весов нейронов.
Формула перерасчета примерно следующая: W[i] = W[i] + Speed*Delta*X[i] — здесь
W[i] — вес i-го элемента,
Speed — скорость обучения,
Delta — знак (-1 или 1),
X[i] — значение i-го входящего сигнала (во многих случаях 0 или 1)

Зачем используется delta?

Разберем такой случай.

На вход программе подается картинка с цифрой 6.

На каком языке программирования писать нейронные сети?

Нейронная сеть распознала цифру 8. Пользователь правит цифру на 6. Что происходит далее в программе?

Программа пересчитывает данные для двух нейронов, описывающих число 6 и число 8, причем для нейрона, описывающего число 6 delta будет равна 1, а для 8 = -1

Как задается параметр скорости?

Данный параметр, чем меньше тем, дольше и точнее(качетственнее) будет происходить обучение сети, и чем больше, тем быстрее и «поверхностней» будет происходить обучение сети.

Параметр Speed может задаваться как вручную, пользователем, так и в ходе выполнения программы(к примеру const)

Как видно, весы символов также должны быть определены. А чем они определяются изначально? на самом деле тут также все просто. Определяются они совершенно случайно, это позволяет избежать «предвзятости» нейронной сети. Обычно, интервал случайных значений небольшой -0.4…0.4 или -0.3..0.2 и т.п.

Теперь переходим к самой интересной части. Как это закодировать!

Создадим два класса — класс Нейрон и класс Сеть (Neuron и Net соответственно)

Опишем основные задачи класса Neuron:

— Реакция на входной сигнал

— Суммирование

— Корректировка

(как дополнительно можно добавить чтение из файла, создание начальных значений, сохранение. Оставим это на «совести» читающих)

Переменные внутри класса Neuron:symbol
— Идентификатор «опознания» — LastY

— Описываемый образ — symbolsymbol

Искусственная нейронная сеть — совокупность нейронов, взаимодействующих друг с другом. Они способны принимать, обрабатывать и создавать данные. Это настолько же сложно представить, как и работу человеческого мозга. Нейронная сеть в нашем мозгу работает для того, чтобы вы сейчас могли это прочитать: наши нейроны распознают буквы и складывают их в слова.

Искусственная нейронная сеть - это подобие мозга. Изначально она программировалась с целью упростить некоторые сложные вычислительные процессы. Сегодня у нейросетей намного больше возможностей. Часть из них находится у вас в смартфоне. Ещё часть уже записала себе в базу, что вы открыли эту статью. Как всё это происходит и для чего, читайте далее.

С чего всё началось

Людям очень хотелось понять, откуда у человека разум и как работает мозг. В середине прошлого века канадский нейропсихолог Дональд Хебб это понял. Хебб изучил взаимодействие нейронов друг с другом, исследовал, по какому принципу они объединяются в группы (по-научному - ансамбли) и предложил первый в науке алгоритм обучения нейронных сетей.

Спустя несколько лет группа американских учёных смоделировала искусственную нейросеть, которая могла отличать фигуры квадратов от остальных фигур.

Как же работает нейросеть?

Исследователи выяснили, нейронная сеть - это совокупность слоёв нейронов, каждый из которых отвечает за распознавание конкретного критерия: формы, цвета, размера, текстуры, звука, громкости и т. д. Год от года в результате миллионов экспериментов и тонн вычислений к простейшей сети добавлялись новые и новые слои нейронов. Они работают по очереди. Например, первый определяет, квадрат или не квадрат, второй понимает, квадрат красный или нет, третий вычисляет размер квадрата и так далее. Не квадраты, не красные и неподходящего размера фигуры попадают в новые группы нейронов и исследуются ими.

Какими бывают нейронные сети и что они умеют

Учёные развили нейронные сети так, что те научились различать сложные изображения, видео, тексты и речь. Типов нейронных сетей сегодня очень много. Они классифицируются в зависимости от архитектуры - наборов параметров данных и веса этих параметров, некой приоритетности. Ниже некоторые из них.

Свёрточные нейросети

Нейроны делятся на группы, каждая группа вычисляет заданную ей характеристику. В 1993 году французский учёный Ян Лекун показал миру LeNet 1 - первую свёрточную нейронную сеть, которая быстро и точно могла распознавать цифры, написанные на бумаге от руки. Смотрите сами:

Сегодня свёрточные нейронные сети используются в основном с мультимедиными целями: они работают с графикой, аудио и видео.

Рекуррентные нейросети

Нейроны последовательно запоминают информацию и строят дальнейшие действия на основе этих данных. В 1997 году немецкие учёные модифицировали простейшие рекуррентные сети до сетей с долгой краткосрочной памятью. На их основе затем были разработаны сети с управляемыми рекуррентными нейронами.

Сегодня с помощью таких сетей пишутся и переводятся тексты, программируются боты, которые ведут осмысленные диалоги с человеком, создаются коды страниц и программ.

Использование такого рода нейросетей - это возможность анализировать и генерировать данные, составлять базы и даже делать прогнозы.

В 2015 году компания SwiftKey выпустила первую в мире клавиатуру, работающую на рекуррентной нейросети с управляемыми нейронами. Тогда система выдавала подсказки в процессе набранного текста на основе последних введённых слов. В прошлом году разработчики обучили нейросеть изучать контекст набираемого текста, и подсказки стали осмысленными и полезными:

Комбинированные нейросети (свёрточные + рекуррентные)

Такие нейронные сети способны понимать, что находится на изображении, и описывать это. И наоборот: рисовать изображения по описанию. Ярчайший пример продемонстрировал Кайл Макдональд, взяв нейронную сеть на прогулку по Амстердаму. Сеть мгновенно определяла, что находится перед ней. И практически всегда точно:

Нейросети постоянно самообучаются. Благодаря этому процессу:

1. Skype внедрил возможность синхронного перевода уже для 10 языков. Среди которых, на минуточку, есть русский и японский - одни из самых сложных в мире. Конечно, качество перевода требует серьёзной доработки, но сам факт того, что уже сейчас вы можете общаться с коллегами из Японии по-русски и быть уверенными, что вас поймут, вдохновляет.

2. Яндекс на базе нейронных сетей создал два поисковых алгоритма: «Палех» и «Королёв». Первый помогал найти максимально релевантные сайты для низкочастотных запросов. «Палех» изучал заголовки страниц и сопоставлял их смысл со смыслом запросов. На основе «Палеха» появился «Королёв». Этот алгоритм оценивает не только заголовок, но и весь текстовый контент страницы. Поиск становится всё точнее, а владельцы сайтов разумнее начинают подходить к наполнению страниц.

3. Коллеги сеошников из Яндекса создали музыкальную нейросеть: она сочиняет стихи и пишет музыку. Нейрогруппа символично называется Neurona, и у неё уже есть первый альбом:

4. У Google Inbox с помощью нейросетей осуществляется ответ на сообщение. Развитие технологий идет полный ходом, и сегодня сеть уже изучает переписку и генерирует возможные варианты ответа. Можно не тратить время на печать и не бояться забыть какую-нибудь важную договорённость.

5. YouTube использует нейронные сети для ранжирования роликов, причём сразу по двум принципам: одна нейронная сеть изучает ролики и реакции аудитории на них, другая проводит исследование пользователей и их предпочтений. Именно поэтому рекомендации YouTube всегда в тему.

6. Facebook активно работает над DeepText AI - программой для коммуникаций, которая понимает жаргон и чистит чатики от обсценной лексики.

7. Приложения вроде Prisma и Fabby, созданные на нейросетях, создают изображения и видео:

Colorize восстанавливает цвета на чёрно-белых фото (удивите бабушку!).

MakeUp Plus подбирает для девушек идеальную помаду из реального ассортимента реальных брендов: Bobbi Brown, Clinique, Lancome и YSL уже в деле.


8.
Apple и Microsoft постоянно апгрейдят свои нейронные Siri и Contana. Пока они только исполняют наши приказы, но уже в ближайшем будущем начнут проявлять инициативу: давать рекомендации и предугадывать наши желания.

А что ещё нас ждет в будущем?

Самообучающиеся нейросети могут заменить людей: начнут с копирайтеров и корректоров. Уже сейчас роботы создают тексты со смыслом и без ошибок. И делают это значительно быстрее людей. Продолжат с сотрудниками кол-центров, техподдержки, модераторами и администраторами пабликов в соцсетях. Нейронные сети уже умеют учить скрипт и воспроизводить его голосом. А что в других сферах?

Аграрный сектор

Нейросеть внедрят в спецтехнику. Комбайны будут автопилотироваться, сканировать растения и изучать почву, передавая данные нейросети. Она будет решать - полить, удобрить или опрыскать от вредителей. Вместо пары десятков рабочих понадобятся от силы два специалиста: контролирующий и технический.

Медицина

В Microsoft сейчас активно работают над созданием лекарства от рака. Учёные занимаются биопрограммированием - пытаются оцифрить процесс возникновения и развития опухолей. Когда всё получится, программисты смогут найти способ заблокировать такой процесс, по аналогии будет создано лекарство.

Маркетинг

Маркетинг максимально персонализируется. Уже сейчас нейросети за секунды могут определить, какому пользователю, какой контент и по какой цене показать. В дальнейшем участие маркетолога в процессе сведётся к минимуму: нейросети будут предсказывать запросы на основе данных о поведении пользователя, сканировать рынок и выдавать наиболее подходящие предложения к тому моменту, как только человек задумается о покупке.

Ecommerce

Ecommerce будет внедрён повсеместно. Уже не потребуется переходить в интернет-магазин по ссылке: вы сможете купить всё там, где видите, в один клик. Например, читаете вы эту статью через несколько лет. Очень вам нравится помада на скрине из приложения MakeUp Plus (см. выше). Вы кликаете на неё и попадаете сразу в корзину. Или смотрите видео про последнюю модель Hololens (очки смешанной реальности) и тут же оформляете заказ прямо из YouTube.

Едва ли не в каждой области будут цениться специалисты со знанием или хотя бы пониманием устройства нейросетей, машинного обучения и систем искусственного интеллекта. Мы будем существовать с роботами бок о бок. И чем больше мы о них знаем, тем спокойнее нам будет жить.

P. S. Зинаида Фолс - нейронная сеть Яндекса, пишущая стихи. Оцените произведение, которое машина написала, обучившись на Маяковском (орфография и пунктуация сохранены):

« Это »

это
всего навсего
что-то
в будущем
и мощь
у того человека
есть на свете все или нет
это кровьа вокруг
по рукам
жиреет
слава у
земли
с треском в клюве

Впечатляет, правда?

Нейросети сейчас в моде, и не зря. С их помощью можно, к примеру, распознавать предметы на картинках или, наоборот, рисовать ночные кошмары Сальвадора Дали. Благодаря удобным библиотекам простейшие нейросети создаются всего парой строк кода, не больше уйдет и на обращение к искусственному интеллекту IBM.

Теория

Биологи до сих пор не знают, как именно работает мозг, но принцип действия отдельных элементов нервной системы неплохо изучен. Она состоит из нейронов - специализированных клеток, которые обмениваются между собой электрохимическими сигналами. У каждого нейрона имеется множество дендритов и один аксон. Дендриты можно сравнить со входами, через которые в нейрон поступают данные, аксон же служит его выходом. Соединения между дендритами и аксонами называют синапсами. Они не только передают сигналы, но и могут менять их амплитуду и частоту.

Преобразования, которые происходят на уровне отдельных нейронов, очень просты, однако даже совсем небольшие нейронные сети способны на многое. Все многообразие поведения червя Caenorhabditis elegans - движение, поиск пищи, различные реакции на внешние раздражители и многое другое - закодировано всего в трех сотнях нейронов. И ладно черви! Даже муравьям хватает 250 тысяч нейронов, а то, что они делают, машинам определенно не под силу.

Почти шестьдесят лет назад американский исследователь Фрэнк Розенблатт попытался создать компьютерную систему, устроенную по образу и подобию мозга, однако возможности его творения были крайне ограниченными. Интерес к нейросетям с тех пор вспыхивал неоднократно, однако раз за разом выяснялось, что вычислительной мощности не хватает на сколько-нибудь продвинутые нейросети. За последнее десятилетие в этом плане многое изменилось.

Электромеханический мозг с моторчиком

Машина Розенблатта называлась Mark I Perceptron. Она предназначалась для распознавания изображений - задачи, с которой компьютеры до сих пор справляются так себе. Mark I был снабжен подобием сетчатки глаза: квадратной матрицей из 400 фотоэлементов, двадцать по вертикали и двадцать по горизонтали. Фотоэлементы в случайном порядке подключались к электронным моделям нейронов, а они, в свою очередь, к восьми выходам. В качестве синапсов, соединяющих электронные нейроны, фотоэлементы и выходы, Розенблатт использовал потенциометры. При обучении перцептрона 512 шаговых двигателей автоматически вращали ручки потенциометров, регулируя напряжение на нейронах в зависимости от точности результата на выходе.

Вот в двух словах, как работает нейросеть. Искусственный нейрон, как и настоящий, имеет несколько входов и один выход. У каждого входа есть весовой коэффициент. Меняя эти коэффициенты, мы можем обучать нейронную сеть. Зависимость сигнала на выходе от сигналов на входе определяет так называемая функция активации.

В перцептроне Розенблатта функция активации складывала вес всех входов, на которые поступила логическая единица, а затем сравнивала результат с пороговым значением. Ее минус заключался в том, что незначительное изменение одного из весовых коэффициентов при таком подходе способно оказать несоразмерно большое влияние на результат. Это затрудняет обучение.

В современных нейронных сетях обычно используют нелинейные функции активации, например сигмоиду. К тому же у старых нейросетей было слишком мало слоев. Сейчас между входом и выходом обычно располагают один или несколько скрытых слоев нейронов. Именно там происходит все самое интересное.

Чтобы было проще понять, о чем идет речь, посмотри на эту схему. Это нейронная сеть прямого распространения с одним скрытым слоем. Каждый кружок соответствует нейрону. Слева находятся нейроны входного слоя. Справа - нейрон выходного слоя. В середине располагается скрытый слой с четырьмя нейронами. Выходы всех нейронов входного слоя подключены к каждому нейрону первого скрытого слоя. В свою очередь, входы нейрона выходного слоя связаны со всеми выходами нейронов скрытого слоя.

Не все нейронные сети устроены именно так. Например, существуют (хотя и менее распространены) сети, у которых сигнал с нейронов подается не только на следующий слой, как у сети прямого распространения с нашей схемы, но и в обратном направлении. Такие сети называются рекуррентными. Полностью соединенные слои - это тоже лишь один из вариантов, и одной из альтернатив мы даже коснемся.

Практика

Итак, давай попробуем построить простейшую нейронную сеть своими руками и разберемся в ее работе по ходу дела. Мы будем использовать Python с библиотекой Numpy (можно было бы обойтись и без Numpy, но с Numpy линейная алгебра отнимет меньше сил). Рассматриваемый пример основан на коде Эндрю Траска.

Нам понадобятся функции для вычисления сигмоиды и ее производной:

Продолжение доступно только участникам

Вариант 1. Присоединись к сообществу «сайт», чтобы читать все материалы на сайте

Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», увеличит личную накопительную скидку и позволит накапливать профессиональный рейтинг Xakep Score!

Мое знакомство с нейронными сетями произошло, когда вышло приложение Prisma. Оно обрабатывает любую фотографию, с помощью нейронных сетей, и воспроизводит ее с нуля, используя выбранный стиль. Заинтересовавшись этим, я бросился искать статьи и «туториалы», в первую очередь, на Хабре. И к моему великому удивлению, я не нашел ни одну статью, которая четко и поэтапно расписывала алгоритм работы нейронных сетей. Информация была разрознена и в ней отсутствовали ключевые моменты. Также, большинство авторов бросается показывать код на том или ином языке программирования, не прибегая к детальным объяснениям.

П ервым и самым важным моим открытием был плейлист американского программиста Джеффа Хитона, в котором он подробно и наглядно разбирает принципы работы нейронных сетей и их классификации. После просмотра этого плейлиста, я решил создать свою нейронную сеть, начав с самого простого примера. Вам наверняка известно, что когда ты только начинаешь учить новый язык, первой твоей программой будет Hello World. Это своего рода традиция. В мире машинного обучения тоже есть свой Hello world и это нейросеть решающая проблему исключающего или(XOR). Таблица исключающего или выглядит следующим образом:

Соответственно, нейронная сеть берет на вход два числа и должна на выходе дать другое число - ответ. Теперь о самих нейронных сетях.

Что такое нейронная сеть?

Нейронная сеть - это последовательность нейронов, соединенных между собой синапсами. Структура нейронной сети пришла в мир программирования прямиком из биологии. Благодаря такой структуре, машина обретает способность анализировать и даже запоминать различную информацию. Нейронные сети также способны не только анализировать входящую информацию, но и воспроизводить ее из своей памяти. Заинтересовавшимся обязательно к просмотру 2 видео из TED Talks: Видео 1 , Видео 2 ). Другими словами, нейросеть это машинная интерпретация мозга человека, в котором находятся миллионы нейронов передающих информацию в виде электрических импульсов.

Какие бывают нейронные сети?

Пока что мы будем рассматривать примеры на самом базовом типе нейронных сетей - это сеть прямого распространения (далее СПР). Также в последующих статьях я введу больше понятий и расскажу вам о рекуррентных нейронных сетях. СПР как вытекает из названия это сеть с последовательным соединением нейронных слоев, в ней информация всегда идет только в одном направлении.

Для чего нужны нейронные сети?

Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений подобных тем, что делает человеческий мозг. Самыми распространенными применениями нейронных сетей является:

Классификация - распределение данных по параметрам. Например, на вход дается набор людей и нужно решить, кому из них давать кредит, а кому нет. Эту работу может сделать нейронная сеть, анализируя такую информацию как: возраст, платежеспособность, кредитная история и тд.

Предсказание - возможность предсказывать следующий шаг. Например, рост или падение акций, основываясь на ситуации на фондовом рынке.

Распознавание - в настоящее время, самое широкое применение нейронных сетей. Используется в Google, когда вы ищете фото или в камерах телефонов, когда оно определяет положение вашего лица и выделяет его и многое другое.

Теперь, чтобы понять, как же работают нейронные сети, давайте взглянем на ее составляющие и их параметры.

Что такое нейрон?

Нейрон - это вычислительная единица, которая получает информацию, производит над ней простые вычисления и передает ее дальше. Они делятся на три основных типа: входной (синий), скрытый (красный) и выходной (зеленый). Также есть нейрон смещения и контекстный нейрон о которых мы поговорим в следующей статье. В том случае, когда нейросеть состоит из большого количества нейронов, вводят термин слоя. Соответственно, есть входной слой, который получает информацию, n скрытых слоев (обычно их не больше 3), которые ее обрабатывают и выходной слой, который выводит результат. У каждого из нейронов есть 2 основных параметра: входные данные (input data) и выходные данные (output data). В случае входного нейрона: input=output. В остальных, в поле input попадает суммарная информация всех нейронов с предыдущего слоя, после чего, она нормализуется, с помощью функции активации (пока что просто представим ее f(x)) и попадает в поле output.

Важно помнить , что нейроны оперируют числами в диапазоне или [-1,1]. А как же, вы спросите, тогда обрабатывать числа, которые выходят из данного диапазона? На данном этапе, самый простой ответ - это разделить 1 на это число. Этот процесс называется нормализацией, и он очень часто используется в нейронных сетях. Подробнее об этом чуть позже.

Что такое синапс?

Синапс это связь между двумя нейронами. У синапсов есть 1 параметр - вес. Благодаря ему, входная информация изменяется, когда передается от одного нейрона к другому. Допустим, есть 3 нейрона, которые передают информацию следующему. Тогда у нас есть 3 веса, соответствующие каждому из этих нейронов. У того нейрона, у которого вес будет больше, та информация и будет доминирующей в следующем нейроне (пример - смешение цветов). На самом деле, совокупность весов нейронной сети или матрица весов - это своеобразный мозг всей системы. Именно благодаря этим весам, входная информация обрабатывается и превращается в результат.

Важно помнить , что во время инициализации нейронной сети, веса расставляются в случайном порядке.

Как работает нейронная сеть?

В данном примере изображена часть нейронной сети, где буквами I обозначены входные нейроны, буквой H - скрытый нейрон, а буквой w - веса. Из формулы видно, что входная информация - это сумма всех входных данных, умноженных на соответствующие им веса. Тогда дадим на вход 1 и 0. Пусть w1=0.4 и w2 = 0.7 Входные данные нейрона Н1 будут следующими: 1*0.4+0*0.7=0.4. Теперь когда у нас есть входные данные, мы можем получить выходные данные, подставив входное значение в функцию активации (подробнее о ней далее). Теперь, когда у нас есть выходные данные, мы передаем их дальше. И так, мы повторяем для всех слоев, пока не дойдем до выходного нейрона. Запустив такую сеть в первый раз мы увидим, что ответ далек от правильно, потому что сеть не натренирована. Чтобы улучшить результаты мы будем ее тренировать. Но прежде чем узнать как это делать, давайте введем несколько терминов и свойств нейронной сети.

Функция активации

Функция активации - это способ нормализации входных данных (мы уже говорили об этом ранее). То есть, если на входе у вас будет большое число, пропустив его через функцию активации, вы получите выход в нужном вам диапазоне. Функций активации достаточно много поэтому мы рассмотрим самые основные: Линейная, Сигмоид (Логистическая) и Гиперболический тангенс. Главные их отличия - это диапазон значений.

Линейная функция

Эта функция почти никогда не используется, за исключением случаев, когда нужно протестировать нейронную сеть или передать значение без преобразований.

Сигмоид

Это самая распространенная функция активации, ее диапазон значений . Именно на ней показано большинство примеров в сети, также ее иногда называют логистической функцией. Соответственно, если в вашем случае присутствуют отрицательные значения (например, акции могут идти не только вверх, но и вниз), то вам понадобиться функция которая захватывает и отрицательные значения.

Гиперболический тангенс

Имеет смысл использовать гиперболический тангенс, только тогда, когда ваши значения могут быть и отрицательными, и положительными, так как диапазон функции [-1,1]. Использовать эту функцию только с положительными значениями нецелесообразно так как это значительно ухудшит результаты вашей нейросети.

Тренировочный сет

Тренировочный сет - это последовательность данных, которыми оперирует нейронная сеть. В нашем случае исключающего или (xor) у нас всего 4 разных исхода то есть у нас будет 4 тренировочных сета: 0xor0=0, 0xor1=1, 1xor0=1,1xor1=0.

Итерация

Это своеобразный счетчик, который увеличивается каждый раз, когда нейронная сеть проходит один тренировочный сет. Другими словами, это общее количество тренировочных сетов пройденных нейронной сетью.

Эпоха

При инициализации нейронной сети эта величина устанавливается в 0 и имеет потолок, задаваемый вручную. Чем больше эпоха, тем лучше натренирована сеть и соответственно, ее результат. Эпоха увеличивается каждый раз, когда мы проходим весь набор тренировочных сетов, в нашем случае, 4 сетов или 4 итераций.

Важно не путать итерацию с эпохой и понимать последовательность их инкремента. Сначала n раз увеличивается итерация, а потом уже эпоха и никак не наоборот. Другими словами, нельзя сначала тренировать нейросеть только на одном сете, потом на другом и тд. Нужно тренировать каждый сет один раз за эпоху. Так, вы сможете избежать ошибок в вычислениях.

Ошибка

Ошибка - это процентная величина, отражающая расхождение между ожидаемым и полученным ответами. Ошибка формируется каждую эпоху и должна идти на спад. Если этого не происходит, значит, вы что-то делаете не так. Ошибку можно вычислить разными путями, но мы рассмотрим лишь три основных способа: Mean Squared Error (далее MSE), Root MSE и Arctan. Здесь нет какого-либо ограничения на использование, как в функции активации, и вы вольны выбрать любой метод, который будет приносить вам наилучший результат. Стоит лишь учитывать, что каждый метод считает ошибки по разному. У Arctan, ошибка, почти всегда, будет больше, так как он работает по принципу: чем больше разница, тем больше ошибка. У Root MSE будет наименьшая ошибка, поэтому, чаще всего, используют MSE, которая сохраняет баланс в вычислении ошибки.

Root MSE

Arctan

Принцип подсчета ошибки во всех случаях одинаков. За каждый сет, мы считаем ошибку, отняв от идеального ответа, полученный. Далее, либо возводим в квадрат, либо вычисляем квадратный тангенс из этой разности, после чего полученное число делим на количество сетов.

Задача

Теперь, чтобы проверить себя, подсчитайте результат, данной нейронной сети, используя сигмоид, и ее ошибку, используя MSE.

Данные:

I1=1, I2=0, w1=0.45, w2=0.78 ,w3=-0.12 ,w4=0.13 ,w5=1.5 ,w6=-2.3.

Решение

H1input = 1*0.45+0*-0.12=0.45

H1output = sigmoid(0.45)=0.61

H2input = 1*0.78+0*0.13=0.78

H2output = sigmoid(0.78)=0.69

O1input = 0.61*1.5+0.69*-2.3=-0.672

O1output = sigmoid(-0.672)=0.33

O1ideal = 1 (0xor1=1)

Error = ((1-0.33)^2)/1=0.45

Результат - 0.33, ошибка - 45%.

Большое спасибо за внимание! Надеюсь, что данная статья смогла помочь вам в изучении нейронных сетей. В следующей статье, я расскажу о нейронах смещения и о том, как тренировать нейронную сеть, используя метод обратного распространения и градиентного спуска.

Использованные ресурсы:

Если вы опытный футболист, который читает защитные схемы так же легко, как вывески на улице, или кинозвезда, чье имя само по себе может сделать кассу фильму, или биржевой маклер, знающий свое дело лучше Уоррена Баффетта, то наши поздравления: вас будут ценить так же, как специалиста по обработке данных или инженера по машинному обучению с докторской степенью Стэнфорда, Массачусетского технологического или Университета Карнеги-Меллон. Каждая компания Кремниевой долины – и все больше компаний в других регионах – стремится заполучить таких специалистов, участвуя в некоем подобии игры на захват флага, только в области кадровой политики. Компании все больше понимают, что их конкурентоспособность зависит от использования машинного обучения и , и количество вакансий для специалистов в этих областях значительно превышает то, что нужно , и другим супердержавам.

Но что если бы вы смогли получить преимущества использования ИИ без необходимости нанимать этих редких и дорогостоящих специалистов? Что если этот порог входа можно понизить с помощью умного ПО? Можно ли использовать глубинное обучение с менее разнообразным набором кадров?

Стартап под названием Bonsai и целая группа похожих компаний отвечают на этот вопрос «да». Приготовьтесь к демократизации искусственного интеллекта. Когда-нибудь это движение может объединить под своими знаменами миллионы, если не миллиарды людей.

На Конференции разработчиков искусственного интеллекта О’Райли в Нью-Йорке генеральный директор Bonsai Марк Хаммонд провел презентацию своей компании. (Также он объявил о раунде инвестиций на сумму в $6 млн – не такие уж большие деньги, учитывая тот факт, что в этом году размер венчурных инвестиций в сферу ИИ уже 1,5 млрд.) Презентация включала повторение одного из самых известных достижений элитных разработчиков глубинного обучения: прохождение алгоритмом DeepMind старых игр для компьютеров Atari в реальном времени. В частности, игра под названием Breakout («Теннис»), в которой платформа отбивает квадратный «мяч», разбивающий мерцающие блоки. (Игра, выпущенная в 1976 году, была прорывом для своего времени – над ней работал сам )

37 строчек кода – вся структура нейросети, которая обучается через классическую игру Atari. Источник: Bonsai

Вариант, предложенный DeepMind, был создан лучшими в мире специалистами по ИИ, которые обучали нейросеть основам игр от Atari, и результат их работы был достоин научных публикаций мирового класса. Версия от Bonsai является упрощением. Все начинается с системы развития, которая загружена в облако. Всего один программист, пусть даже тот, кто вообще не обучался основам ИИ, может в общих чертах описать игру, а система сама выберет подходящий алгоритм обучения, чтобы задействовать нейросеть. (Бедным докторам наук из DeepMind приходилось писать эти алгоритмы самостоятельно). На этом этапе программисту нужно всего лишь за пару минут заложить основные принципы игры – например, «ловить мяч на платформу» - а затем Bonsai сама займется развитием нейросети и ее оптимизацией для получения наилучшего результата. А нейросеть на выходе уже сама будет играть в «Теннис».

Версия игры, написанная Bonsai, укладывается всего в 37 строчек кода. Но эта простота обманчива. Когда Хаммонд объясняет, что находится в основе алгоритма, он показывает рисунок с демонстрацией того, как его система строит нейросеть, способную соперничать с одним из лучших творений Google. Самому программисту даже не пришлось вникать в тонкости машинного обучения. Смотри, мам, я могу без рук докторской степени!


Так играет в «Теннис» нейросеть, обученная системой Bonsai. Источник: Bonsai

Впечатляющий трюк. «Обычно меня трудно удивить демонстрацией, - рассказывает Джордж Уильямс, научный сотрудник Курантовского института математики Нью-Йоркского университета. - Однако то, что показал мне Марк, было вполне реально и в то же время потрясающе. Он взял все достижения машинного интеллекта и создал инструменты, которые позволят разработать новое поколение систем ИИ».

Пока неясно, останется ли Bonsai лидером этого движения. Но Уильямс прав. Следующим шагом в неотвратимом появлении все более умных компьютеров будет разработка инструментов машинного обучения для (относительных) чайников.

Bonsai была рождена на пляже. Хаммонд, бывший инженер и евангелист разработки ПО, уже какое-то время раздумывал над возможностями искусственного интеллекта. После ухода из Microsoft в 2004 году он стал заниматься нейробиологией в Йеле, затем в 2010 году недолгое время проработал в Numenta – стартапе по разработке ИИ, которым владел Джефф Хокинс (сооснователь компании Palm, производителя КПК). Затем Хаммонд открыл еще одну компанию в совсем другой сфере, которую он затем продал.

Тогда, в 2012 году, Хаммонд приехал в Южную Калифорнию навестить друзей. Его маленький сын устал, и все пошли обратно к машине. Пока жена Хаммонда болтала с друзьями, а сын засыпал у него на руках, он провел мысленный эксперимент. В основе этого эксперимента лежал популярные мем из мира ИИ – концепция «мастер-алгоритма». Профессор Вашингтонского университета Педро Домингес в одноименной книге написал, что этот еще не созданный алгоритм мог бы стать панацеей для всех проблем отрасли. По идее, когда этот алгоритм все-таки изобретут, с его помощью можно будет методически внедрять системы ИИ куда угодно.

Хаммонд заключил, что нужно создать систему, которая позволит даже самому заурядному разработчику использовать инструменты ИИ Но Хаммонд видел один изъян в этой идее. «Допустим, мы нашли этот мастер-алгоритм, – говорил он себе, пока 18-месячный сын дремал у него на руках – кто станет внедрять его в бесчисленном множестве возможных сценариев?» На данный момент использовать такие инструменты под силу только настоящим адептам машинного обучения. Возможностей использования ИИ будет слишком много для ограниченного числа этих людей. Так он пришел к заключению, что нужно создать систему, которая снизит порог входа и позволит даже самому заурядному разработчику использовать эти инструменты. Такой системе не нужны будут инженеры крайне узкой специализации для обучения нейросетей. Программисты смогут сами обучать их для получения желаемого результата.

Пока Хаммонд обдумывал свои идеи, он провел аналогии с историей программирования. Изначально операторам компьютеров приходилось кропотливо писать код, который обеспечивал работу оборудования. Затем программисты взяли на вооружение набор стандартных инструкций, который был назван языком ассемблера и ускорил процесс – но вам все еще нужно было иметь очень высокий уровень подготовки, чтобы довести дело до ума. Прорыв случился, когда инженеры создали компилятор – программу, которая преобразовывала код на более удобных, так называемых языках «высокого уровня» (от самых первых BASIC и LISP до нынешних Python и C), в код на языке ассемблера. Только после этого создание мощных приложений стало доступно даже профессионалам относительно низкого уровня. Хаммонд считает, что сейчас, благодаря инструментам вроде TensorFlow от Google, системы ИИ вышли на уровень языка ассемблера, то есть инженерам уже становится легче создавать нейросети, но это все равно остается доступным тем, кто действительно понимает принцип их работы. Хаммонд хотел создать аналог компилятора, чтобы упростить все еще больше.

Этой идеей он поделился с Кином Брауном, бывшим коллегой из Microsoft, который недавно продал свой игровой стартап китайской интернет-компании. Идея ему понравилась, так как в то время он как раз пробовал заниматься машинным обучением, используя доступные на тот момент инструменты. «Вообще я человек неглупый, - говорит Браун - я приехал в Китай и выучил их язык, работал программистом в Microsoft, но даже для меня это было слишком». Он согласился стать сооснователем Bonsai. (Название было выбрано, потому что в этом японском искусстве достигается идеальный баланс между естественным и искусственным. Еще одно преимущество появилось, когда владельцы интернет-домена разрешили молодой компании зарегистрировать свой сайт по адресу bons.ai .)

Bonsai – не единственная компания, работающая над решением проблемы нехватки квалифицированных специалистов по ИИ. Некоторые из более крупных компаний поняли необходимость обучения собственных кадров и обучения обычных программистов в мастеров по нейросетям: в Google создали целую серию внутренних программ, а Apple стала обращать внимание на навыки и личные качества программистов, которые помогли бы им быстрее освоить нужные умения. Как уже говорилось выше, Google также выпустила в широкий доступ программу TensorFlow, благодаря которой ее инженерам проще создавать нейросети. Уже доступны и другие наборы инструментов для создания ИИ, и, без сомнения, таких инструментов будет становиться только больше.

«Мы открываем новые возможности для тех, кто не является ученым или программистом» В то же время другие стартапы тоже трудятся во имя демократизации ИИ. Компания Bottlenose решает проблему нехватки ученых, но для другой целевой аудитории: если Bonsai делает свой продукт в первую очередь для разработчиков ПО, Bottlenose планирует облегчить жизнь бизнес-аналитикам. Однако мотивы те же самые. «Мы открываем новые возможности для тех, кто не является ученым или программистом», - говорит генеральный директор компании Нова Спивак. Некоторые стартапы собираются затронуть еще больше пользователей: презентация компании Clarifai на конференции О’Райли называлась «Как сделать так, чтобы каждый человек на планете мог обучить и использовать ИИ».

Таким образом, хотя Bonsai, похоже, появилась в нужное время в нужном месте, сейчас индустрия ИИ настолько бурно развивается, что у стартапа Хаммонда могут возникнуть трудности с привлечением к себе внимания. Адам Чейер, специалист по ИИ, который участвовал в создании и сейчас занимает пост главного инженера , уже видел продукт Bonsai и остался очень впечатлен. Но он отмечает, что, хотя Bonsai делает ИИ доступным даже новичкам, людям все равно придется совершать умственные усилия, чтобы разобраться в их языке программирования и общем устройстве системы. «Когда новый продукт выпускает большая компания вроде Google, люди со всех ног бросаются его пробовать. Но если такой же продукт делает стартап, привлечь к нему людей намного сложнее. Хватит ли у них сил, чтобы задействовать достаточное количество пользователей и сделать свой инструмент популярным? Получится ли все у Bonsai или нет – сложно сказать прямо сейчас».

Компания создала систему из нескольких компонентов, среди которых Brain, облачная система для создания нейросетей, язык написания скриптов под названием Inkling и Mastermind, «интегрированная среда для разработки», которая предоставляет программистам все необходимые инструменты в одном месте. («Приложение для создания приложений», - объясняет Браун). Система Bonsai доступна для бета-тестирования.

Марк Хаммонд в главном офисе Bonsai в центре Беркли. Фото: Backchannel

Как объясняет Хаммонд, построение нейросети с помощью Bonsai в нескольких ключевых моментах отличается от того, как это делают профессионалы. На сегодня вам приходится решать, какие инструменты лучше всего подходят для решения проблемы, а для этого решения требуются знания и опыт. По словам Хаммонда, Bonsai делает это за вас. Вам остается только изложить основы того, чему вы хотите научить систему.

Так что пока опытные инженеры систем ИИ «тренируют» сеть, сравнивая информацию на выходе с желаемым результатом (например, показывая сети фотографии собак и поощряя ее при выводе подходящих характеристик), Bonsai позволяет вам «научить» систему, просто разбив весь процесс на основные принципы. Если продолжить пример с собаками, то вы могли бы упомянуть такие вещи, как четыре лапы, морда и язык, свисающий изо рта. Вы даете только необходимую базу, а облачный «умный движок» Bonsai, в который входит и «мозг», доводит дело до конца.

Такой подход дает косвенный положительный эффект: ученые, обучившие традиционную нейросеть, часто понятия не имеют, как именно творится магия, потому что такие сети в основном перенастраивают себя сами, организуя все понятным только себе образом. В случае с Bonsai понять принципы мышления сети можно по тем правилам, которые заложил пользователь. «Программное обеспечение не должно быть черным ящиком», - говорит Хаммонд. К примеру, если вы создаете программу для беспилотного автомобиля, и он не остановился в нужный момент, вы должны иметь возможность вникнуть и понять, почему система приняла такое решение. Примерно так же Amazon объясняет , почему та или иная книга появилась у вас в рекомендациях.

Один большой вопрос к подходу Bonsai состоит в том, снизят ли все эти абстрактные вещи производительность и эффективность. Обычно именно это происходит при использовании компиляторов: программы, написанные с их помощью, работают не так быстро и эффективно, как те, что написаны на языке ассемблера и передаются напрямую в аппаратную часть. Кроме того, говорить, что система, которая сама выбирает инструмент для использования, делает это лучше тех профессоров, которым уже вроде как и не нужно заниматься построением нейросетей, было бы явным преувеличением.

«Я думаю, всегда приходится идти на компромисс, - говорит Лайла Третиков, специалист по ИИ, ранее работавшая главой фонда Wikimedia Foundation и консультировавшая Bonsai. - Результаты будут не совсем такими же, как если задействовать группу ученых. Но я не уверена, что важнее: качество или сама по себе возможность это сделать». Адам Чейер из Viv также предполагает, что код Bonsai может работать не так эффективно, как ПО, оптимизированное под конкретную задачу. «Но это все равно чертовски хороший код, и он позволяет вам не вдаваться в ненужные тонкости», - добавляет он. Чейер также говорит, что в его компании, где как раз работают столь ценные специалисты по ИИ, вряд ли будут пользоваться Bonsai - разве что для создания прототипа какой-либо из идей перед тем, как реализовать ее старым проверенным способом.

Bonsai помогает движению за появление доступа к ИИ у людей, не имеющих специальной подготовки Хаммонд, в свою очередь, заверяет, что проигрыш в качестве при использовании Bonsai совсем не велик. «Производительность со временем увеличивается, – говорит он – в это просто нужно поверить». Когда-нибудь в это можно будет не только поверить, но и проверить.

У Bonsai большие планы на следующие несколько месяцев. Совсем скоро компания объявит о начале сотрудничества с производителем компонентов Nvidia, и клиенты Bonsai смогут получить более качественные результаты при использовании оборудования этой марки. Также компания опубликует информацию о своем договоре с центром Siemens TTB, который последние несколько месяцев тестировал систему Bonsai в области автоматизации и контроля производства.

Bonsai пытается решить проблемы, которые не смогли решить даже самые могущественные компании. «Мы работаем над многими играми», - добавляет Хаммонд и объясняет, что игры решают ключевые проблемы, которые планируют разрешить в Bonsai. «Некоторые игры не поддаются даже DeepMind. Хотя они научили свой алгоритм играть во множество игр помимо «Тенниса», пока их система еще не способна играть в «Пакмена».

Но намного важнее то, как Bonsai помогает движению за появление доступа к ИИ у людей, не имеющих специальной подготовки. Со временем инструменты высокого уровня будут становиться все мощнее и, в конце концов, станут повсеместными. Дойдем ли мы до того момента, когда каждый человек сможет обучить и использовать искусственный интеллект? Скажем так: очень много денег поставлено именно на этот вариант развития событий.