Светодиодный светильник на батареях своими руками. Как сэкономить и смастерить светильник из led-ленты своими руками. Крепление и установка

Благодаря своим многочисленным положительным качествам, надежности, практичности, светодиодные лампы практически с первых мгновений своего появления завоевали рынок. Светильники со светодиодными источниками света имеют большой срок службы, не нагреваются при работе, потребляют минимальное количество энергии при высокой рассеиваемой мощности излучаемого светового потока. Особенность работы светодиодов связана с технологией изготовления p-n-перехода, выбора кристалла. Современные технологии позволяют изготовить очень яркие светодиоды со световым потоком 4000 К, что намного больше, чем способны излучать даже экономичные люминесцентные лампы.

Выпускаются лампы с желтым или белым свечением, поэтому покупатели могут выбирать наиболее подходящие для своего помещения источники света. Желтые, имея температуру свечения 6000 К, создают теплое свечение, а белые с 4000 К – холодное.

Светодиодные лампы являются более выгодными по сравнению с лампами накаливания или «энергосберегающими», но из-за особенностей изготовления , своей конструктивной сложности они стоят дороже. Хотя, сравнивая конструкцию и технологичность люминесцентных источников света, можно сделать вывод, что производство светодиодных проще.

Учитывая высокую цену на светодиодные лампы, многие хотят сделать ее своими руками, тем более для этого все необходимые детали можно приобрести на радиорынке. Чего не скажешь о ртутной лампе , в которой не только плата питания сложна, но и колба с газом является недоступным элементом. Поэтому, если хотите изготовить качественные светодиодные лампы для теплицы своими руками, то это можно сделать довольно просто.

Галерея: светодиодные лампы своими руками (25 фото)





















Сфера применения

Преимущество светодиодных источников света заключается в универсальности. Производители выпускают различные по мощности излучения, форме и количеству элементов светодиодные матрицы или сами светодиоды. Поэтому можно конструировать светильники на свое усмотрение как на стандартный цоколь от разбитой лампы, так и на специализированный в соответствии с требованиями подключения к драйверу или плате управления.

Преимуществом светодиодных источников света является управляемость яркостью свечения путем изменения напряжения на его входе. Таким образом, можно получить оттенок от еле заметного до чрезмерно яркого. Это свойство дает возможность создавать много полезных вещей:

Дачные строения на участке, подлежащие регистрации в 2019 году

Светодиоды получили применение во многих сферах благодаря своим практическим качествам. Они активно используются в промышленности, быту, медицине, детских дошкольных учреждениях.

Изготовление своими руками

Известно много различных форм светильников и систем подсветки, которые могут быть изготовлены своими руками в корпусе, а может быть использована готовая лента , что также весьма удобно. Например, при создании подсветки клавиатуры или полок в шкафу.

Что же потребуется для изготовления светильника на светодиодах? Долго размышлять не придется, потому что светодиодные источники света являются универсальными. Их можно подключать на переменное или постоянное напряжение любого номинала. Достаточно изготовить качественный драйвер или блок управления и грамотно расположить светодиоды на пластине.

Крепление и установка

Прежде чем приступать к изготовлению светодиодной лампы, стоит подумать над ее назначением. Если она будет устанавливаться в стандартный патрон, то для этого потребуется цоколь Е27, Е14, G9. Взять его можно с любой старой лампочки, например, от люминесцентной. Точно таким принципом руководствуются при освещении теплицы светодиодными лампами.

В зависимости от назначения светодиодные светильники также могут быть различными. Одни предназначены для общего освещения, для использования в качестве ночников или в качестве фитолампы для выращивания растений. В первом случае для изготовления светильников используются яркие светодиоды холодного или теплого свечения, что наиболее предпочтительно. С точки зрения влияния на зрение человека, лампы лучше покупать именно с желтым свечением, точно так же дело касается и выбора самих светодиодов.

А когда речь идет о ночнике или тусклой подсветки, то для его изготовления следует выбирать отличные от белого цвета или же использовать режимы свечения с низкой яркостью. Если же предстоит изготовить фитолампу для выращивания растений, то для этого лучше выбрать красный и синий цвета светового потока. Именно спектр этих оттенков оказывает благоприятное воздействие на рост и обеспечивает интенсивное развитие растений.

Как сделать фитолампу

Светодиодные лампы получили широкое применение, особенно часто их используют для выращивания растений в теплицах. Для этого применяется так называемая фитолампа. Ее особенность заключается в спектре света. Растения хорошо растут при красном, синем и желтом оттенках света. Например, красный способствует лучшему фотосинтезу , синий стимулирует интенсивность роста на клеточном уровне, а желтый обогащает растение прочими немаловажными компонентами. Поэтому светодиодные лампы своими руками станут идеальным вариантом, тем более, когда речь идет о выращивании растений.

Сколько квадратных метров в 1 сотке земли

Но чтобы растение действительно интенсивно набирало рост в теплице, укреплялось и быстрее формировалось, необходимо выдерживать пропорцию количества красного света к синему в соотношении 1:3. И добавить чуточку желтого. Растение в таких условиях значительно крепче , выносливее и здоровее. Поэтому если решите выращивать рассаду, то фитолампу можно изготовить своими руками. Для этого потребуется купить ленту или комбинировать красные и синие цвета светодиодов в светильниках для теплицы. Такое освещение в теплице не потребует значительных материальных растрат, потому что цена материалов ниже, чем готовой фитолампы.

Благодаря возможности размещения источников освещения в любом удобном месте, можно сэкономить на электричестве. Например, ленту можно протянуть над самими растениями, исключая излишние растраты на освещение пространства всей теплицы.

Для изготовления лампы не потребуется покупать специальные светодиоды, для теплиц вполне подойдут рыночные или заказанные из интернет-магазина. В продаже имеются различные модели , важно, чтобы яркость была достаточной, а цвет соответствовал эффективному спектру.

Базовая конструкция

Когда речь идет об изготовлении своими руками светодиодного освещения для теплиц или для других определенных нужд, то тип конструкции выбирается исходя из особенностей его закрепления. Если предстоит устанавливать в стандартный навесной светильник с патроном на Е27, то, соответственно, лучше применить и стандартный цоколь.

Корпус лампочки можно изготовить из любого прозрачного материала. Но лучший эффект вы получите от непосредственного свечения без использования различных светофильтров. А ведь колбы и рассеиватели как раз таковыми и являются. Когда речь идет об изготовлении лампы для хозяйственных нужд, то красоту можно отложить на второй план.

Выбор источника питания

Светодиодные источники света являются универсальными. Их можно подключать на любое напряжение питания. Но только для осуществления этого потребуется изготовить необходимый драйвер или простейший блок питания , конструкцию устройства следует выбирать исходя из места обустройства освещения. В теплице практически всегда присутствует высокая влажность, поэтому блок питания должен быть герметичным.

На практике существует масса схем подключения светодиодов при изготовлении освещения теплицы своими руками с питанием как от сети постоянного напряжения 12В, так и к сети 220В с переменным током. Но на этом форматы питающих цепей не заканчиваются, потому что путем стандартных расчетов можно использовать любое напряжение.

Как рассчитать источник питания

Чтобы правильно подобрать компоненты и выбрать корректные режимы работы источника освещения для теплицы или другого места, необходимо знать параметры светодиодов. А к ним относятся:

  • Напряжение питания при прямом включении. Практически все светодиоды, если это не сборка, имеют стандартное напряжение питания, равное 3 В.
  • Ток потребления при прямом включении. Стандартный p-n-переход для нормального свечения потребляет 20-30 мА. Но также имеются светодиоды с увеличенным током до 100 и более мА, называемые сверхъяркими. Поэтому важно проверить параметры в справочной литературе, благо она доступна без ограничений на множестве порталов.
  • Пиковый ток и напряжение. Эти значения косвенные, но при расчете качественного и надежного источника важны.

Рассмотрим пример расчета источника питания для светильника на 20 светодиодов, подключенных последовательно-параллельно. Первым делом стоит оговориться. Если хотите изготовить действительно надежный источник света, то потребуется добавить в схему:

  • Варистор с импульсными напряжением 278 В при условии подключения схемы на 220 В.
  • Электронный предохранитель, он защитит устройство от превышения тока в случае выгорания одного из светодиодов на КЗ.
  • Стабилизатор. Для повышения надежности светильника в его схему следует включить стабилизатор на 3В и более в зависимости от суммарного напряжения последовательного включения светодиодов. В рассматриваемой лампе их 10, поэтому напряжение стабилизации должно составить 30 В.

Практическая реализация

На практике схема драйвера существенно упрощается, исключая всевозможные защиты и предохранители. Поэтому качественными готовые лампы назвать сложно. Но не всегда это так. Дорогие светодиодные лампы бывают оснащены действительно надежным источником со всеми защитами.

Устройства с разделительным конденсатором

Самой распространенной и практичной схемой питания для светодиодов является именно емкостный источник . Он занимает мало места и не требует много профессиональных навыков для изготовления.

На рисунке ранее была изображена классическая схема традиционного питателя. Она имеет разделительный конденсатор, разрядный резистор, выпрямитель и стабилитрон. Подключать схему без нагрузки не рекомендуется, потому что амплитудное значение напряжения будет высоким и при обрыве одной из цепей светодиодов выйдет из строя стабилитрон.

Драйвер на ШИМ-контроллере

Более выносливыми и качественными являются схемы с драйвером на микроконтроллере и трансформаторе. Его схема представлена на картинке выше. Здесь также не требуется много деталей, а порядок расчета можно найти в описании. Все реализуется довольно просто.

Постепенно приборы освещения переходят на светодиодные лампы. Произошло это не сразу, был затяжной переходный период с применением так называемых экономок – компактных газоразрядных лампочек со встроенным блоком питания (драйвером) и стандартным патроном Е27 или Е14.

Такие лампы широко применяются и сегодня, поскольку их стоимость в сравнение с LED источниками света не такая «кусачая».
При неплохом балансе цены и экономичности (разница в цене с обычными лампами накаливания со временем окупается за счет экономии электроэнергии), газоразрядные источники света имеют ряд недостатков:

  • Срок службы ниже, чем у ламп накаливания.
  • Высокочастотные помехи от блока питания.
  • Лампы, не любят частого включения – выключения.
  • Постепенное снижение яркости.
  • Влияние на расположенные рядом поверхности: на поверхности потолка (над лампой) со временем появляется темное пятно.
  • Да и вообще, иметь в доме колбу с некоторым количеством ртути как-то не очень хочется.
    Прекрасная альтернатива – светодиодные светильники. Список достоинств весомый:
  • Потрясающая экономичность (до 10 раз в сравнение с лампами накаливания).
  • Огромный срок службы.
  • Совершенные и безопасные блоки питания (драйверы).
  • Абсолютно не зависят от количества включений.
  • При нормальном охлаждении не теряют яркости практически весь период эксплуатации.
  • Полная механическая безопасность (даже если разбить декоративный рассеиватель, никаких вредных веществ в помещение не попадет).
Недостатка два:
  • Направленность светового потока предъявляет высокие требования при конструировании рассеивателя.
  • Все-таки они дорого стоят (речь идет о качественных брендах, безымянные изделия среднего уровня вполне доступны).
Если ценовой вопрос регулируется подбором производителя, то конструктивные особенности не всегда позволяют просто заменить лампу в любимой люстре. Разумеется, есть богатый выбор классических грушевидных LED ламп, которые подходят под любой размер.
Но именно в этой конструкции кроется «засада».


Перед нами качественная (при этом относительно недорогая) лампа с яркостью свечения 1000 Lm (эквивалент 100 ваттной лампы накаливания), и потребляемой мощностью 13 Вт. У меня такие LED источники света работают по много лет, светят приятным теплым светом (температура 2700 K), и никакой деградации яркости со временем не наблюдается.
Но для мощного света, требуется серьезное охлаждение. Поэтому корпус у этой лампы на 2/3 состоит из радиатора. Он пластиковый, не портит внешний вид, и достаточно эффективен. Из конструкции следует главный недостаток – реальным источником света является полусфера в верхней части лампы. Это затрудняет подбор светильника – не в каждой рожковой люстре такая лампа будет выглядеть гармонично.
Есть лишь один выход – покупать готовые LED светильники, конфигурация которых изначально рассчитана под конкретные источники света.
Ключевое слово – покупать. А куда девать любимые торшеры, люстры и прочие светильники в квартире?

Поэтому было принято решение конструировать LED лампы самостоятельно

Основной критерий – минимизация стоимости.
Есть два основных направления при разработке светодиодных источников света:
1. Применение маломощных (до 0.5 Вт) светодиодов. Их требуется много, можно сконфигурировать любую форму. Не нужен мощный радиатор (мало греются). Существенный недостаток – более кропотливая сборка.
2. Использование мощных (1 Вт – 5 Вт) LED элементов. Эффективность высокая, трудозатраты в разы меньше. Но точечное излучение требует подбора рассеивателя, и для реализации проекта нужны хорошие радиаторы.
Для экспериментальных конструкций я выбрал первый вариант. Самое недорогое «сырье»: 5 мм светодиоды с рассеиванием 120° в прозрачном корпусе. Их называют «соломенная шляпа».


Характеристики следующие:
  • прямой ток = 20 мА (0.02 А)
  • падение напряжения на 1 диоде = 3,2-3,4 вольта
  • цвет – теплый белый
Такое добро продается по 3 рубля пучок на любом радиорынке.
Я купил несколько упаковок по 100 шт. на aliexpress (ссылка на покупку). Обошлось чуть меньше, чем по 1 р. за штуку.


В качестве блоков питания (точнее сказать источников тока), я решил использовать проверенную схему с гасящим (балластным) конденсатором. Достоинства такого драйвера – экстремальная дешевизна, и минимальное потребление энергии. Поскольку нет ШИМ контроллера, или линейного стабилизатора тока – лишняя энергия в атмосферу не уходит: в этой схеме нет элементов с рассеивающим тепло радиатором.
Недостаток – отсутствие стабилизации тока. То есть, при нестабильном напряжении электросети, яркость свечения будет меняться. У меня в розетке ровно 220 (+/- 2 вольта), поэтому такая схема в самый раз.
Элементная база тоже не из дорогих.

  • диодные мосты серии КЦ405А (можно любые диоды, хоть Шоттки)
  • пленочные конденсаторы с напряжением 630 вольт (с запасом)
  • 1-2 ваттные резисторы
  • электролитические конденсаторы 47 mF на 400 вольт (можно взять емкость побольше, но это выходит за рамки экономности)
  • такие мелочи, как макетная плата и предохранители, обычно есть в арсенале любого радиолюбителя
Чтобы не изобретать корпус с патроном Е27, используем сгоревшие (еще один повод от них отказаться) экономки.


После аккуратного (на улице!) извлечения колбы со ртутными парами, остается прекрасная заготовка для творчества.

Основа основ – расчет и принцип работы токового драйвера с гасящим конденсатором

Типовая схема изображена на иллюстрации:

Как работает схема:

Резистор R1 ограничивает скачок тока при подаче питания, пока схема не стабилизируется (около 1 секунды). Значение от 50 до 150 Ом. Мощность 2 Вт.
Резистор R2 обеспечивает работу балластного конденсатора. Во-первых, он его разряжает при отключении питания. Как минимум для того, чтобы вас не тряхнуло током при выкручивании лампочки. Вторая задача – не допустить токового броска в случае, когда полярность заряженного конденсатора и первой полуволны 220 вольт не совпадают.
Собственно, гасящий конденсатор С1 – основа схемы. Он является своеобразным фильтром тока. Подбирая емкость, можно установить любой ток в цепи. Для наших диодов он не должен превышать 20 мА в пиковых значениях напряжения сети.
Далее работает диодный мост (все-таки светодиоды – это элементы с полярностью).
Электролитический конденсатор C2 нужен для предотвращения мерцания лампы. Светодиоды не имеют инертности при включении-выключении. Поэтому глаз будет видеть мерцание с частотой 50 Гц. Кстати, этим грешат дешевые китайские лампы. Проверяется качество конденсатора с помощью любого цифрового фотоаппарата, хоть смартфона. Посмотрев на горящие диоды через цифровую матрицу, можно увидеть моргание, неразличимое для человеческого глаза.
Кроме того, этот электролит дает неожиданный бонус: светильники выключаются не сразу, а с благородным медленным затуханием, пока емкость не разрядится.
Расчет гасящего конденсатора производится по формуле:
I = 200*C*(1.41*U cети - U led)
I – полученный ток цепи в амперах
200 – это константа (частота сети 50Гц * 4)
1,41 – константа
С – емкость конденсатора С1 (гасящего) в фарадах
U сети – предполагаемое напряжение сети (в идеале – 220 вольт)
U led – суммарное падение напряжения на светодиодах (в нашем случае – 3,3 вольта, помноженное на количество LED элементов)
Подбирая количество светодиодов (с известным падением напряжения) и емкость гасящего конденсатора, надо добиться требуемого тока. Он должен быть не выше указанного в характеристиках светодиодов. Именно силой тока вы регулируете яркость свечения, и обратно пропорционально – срок жизни светодиодов.
Для удобства можно создать формулу в Exel.


Схема проверена неоднократно, первый экземпляр собран почти 3 года назад, трудится в светильнике на кухне, сбоев в работе не было.
Переходим к практической реализации проектов. Количество LED элементов и емкость конденсатора в отдельных схемах обсуждать нет смысла: проекты индивидуальные для каждого светильника. Рассчитывались строго по формуле. Приведенная выше схема на 60 светодиодов с конденсатором на 68 микрофарад – не просто пример, а реальный расчет для тока в цепи 15 мА (для продления жизни светикам).

LED лампа в рожковую люстру

Выпотрошенный патрон от экономки используем в качестве корпуса для схемы и несущей конструкции. В этом проекте я не использовал макетную плату, собрал драйвер на кругляше из ПВХ толщиной 1 мм. Получилось как раз в размер. Два конденсатора – по причине подбора емкости: не нашлось нужного количества микрофарад в одном элементе.


В качестве корпуса для размещения LED элементов использована баночка от йогурта. В конструкции также использовал обрезки листов вспененного ПВХ 3 мм.


После сборки получилось аккуратно и даже красиво. Такое расположение патрона связано с формой люстры: рожки направлены вверх, на потолок.



Далее размещаем светодиоды: по схеме 150 шт. Протыкаем пластик шилом, трудозатраты: один полноценный вечер.



Забегая вперед, скажу: материал корпуса себя не оправдал, слишком тонкий. Следующий светильник был изготовлен из листового ПВХ 1 мм. Для придания формы рассчитал развертку конуса на те же 150 диодов.


Получилось не так изящно, но надежно, и отлично держит форму. Лампа полностью скрыта в рожке люстры, поэтому внешность не столь важна.



Собственно, установка.


Светит равномерно, в глаза не бьёт.


Люмены не мерял, по ощущениям – ярче, чем лампа накаливания 40 Вт, немного слабее 60 Вт.


LED лампа в плоский потолочный светильник на кухню


Идеальный донор для подобного проекта. Все светодиоды буду расположены в одной плоскости.


Рисуем шаблон, вырезаем матрицу для размещения LED элементов. При таком диаметре плоский лист ПВХ будет деформироваться. Поэтому я использовал донышко от пластикового ведра из-под строительных смесей. По внешнему контуру есть ребро жесткости.


Диоды устанавливаются с помощью привычного шила: 2 дырки по разметке.

В этой статье мы рассмотрим примеры изготовления самодельных светодиодных светильников для различных нужд.

1. Простейший светильник для бытовых нужд.

Для начала стоит определиться с тем, какие светодиоды лучше использовать. Если выбирать между мощными и маломощными - первые лучше с точки зрения трудоемкости. Чтобы заменить один мощный 1 Вт светодиод, понадобится 15-20 маломощных 5 мм или smd светодиодов. Соответственно, пайки с маломощными гораздо больше. Остановимся на мощных. Обычно они делятся на два вида - выводные и поверхностного монтажа. Для облегчения жизни лучше использовать выводные. Мощность светодиода лучше выбирать не более 1 Вт.

Также нам понадобится драйвер тока, чтобы светодиоды получали необходимое напряжение и долго служили.
Кроме того, для продолжительной работы светодиода (особенно для мощного)необходимрадиатор. Для его изготовления лучше всего подходит алюминий. На каждый одноваттный светодиод нужен кусок алюминия 50х50 мм, толщиной около 1 мм. Кусок может быть меньше, если его изогнуть. Если Вы возьмете кусок 25х25 мм и толщиной 5 мм - нужного эффекта не получите. Чтобы рассеивать тепло, нужна площадь, а не толщина.

Рассмотрим модель простейшего светильника. Нам понадобятся: три светодиода 1 Вт, драйвер 3х1 Вт, двухсторонний теплопроводящий скотч, радиатор (например, кусок П-образного профиля толщиной 1 мм и длиной 6-8 см).

Теплопроводящий скотч может проводить тепло. Поэтому обычный двусторонний скотч из не подойдет. Отрезаем полоску скотча шириной 6-7 мм.

Обезжириваем радиатор и донышки светодиодов. Ацетон для этого использовать нежелательно - пластиковая линза светодиода может помутнеть.

Наклеиваем скотч на радиатор. Затем размечаем радиатор, чтобы установить светодиоды ровно.

Устанавливаем светодиоды на скотч. При этом соблюдаем полярность - все светодиоды должны быть развернуты одинаково так, чтобы "плюс" одного светодиода смотрел на "минус" соседнего. Слегка прижимаем их для лучшего контакта. После этого наносим олово на выводы светодиодов для облегчения дальнейшей пайки. Если у вас есть опасение, что скотч при этом может прогореть - просто приподнимите выводы светодиодов так, чтобы они не касались скотча. Корпус светодиода при этом нужно придерживать пальцем, чтобы от скотча не оторвался. Впрочем, можно отогнуть выводы заранее.

Соединяем светодиоды между собой. Для этого вполне достаточно жилки от любого многожильного провода.

Припаиваем драйвер.

Простейшая модель светильника готова. Теперь Вы можете вставить его в любой подходящий корпус. Разумеется, можно сделать и более мощный светильник, только диодов нужно по больше и драйвер помощнее, а принцип останется тем же. Подобная методика подойдет как для изготовления одиночного светильника, так и для мелкосерийного производства.

2. Люстра на основе светодиодов.

Нам понадобятся:
1. Цоколь от сгоревшей энергосберегающей лампы.
2. Два захвата (чтобы подключиться к светодиоду);
3. Мощный десятиваттный светодиод, цвет по вашему выбору;
4. Два маленьких винта;
5. Один десяти ваттный светодиодный драйвер;
6. Термопаста;
7. Радиатор;
8. Термоусадочная трубка (или изолирующая лента);
9. провода сечением 2 мм.


Для начала необходимо разобрать старую или сгоревшую энергосберегающую лампу. Важно проявлять осторожность и не повредить стеклянную колбу. Иначе из нее выйдет очень вредный для здоровья ртутный газ.

Нам нужна только часть корпуса с цоколем. Обрежем повода от платы идущие к цоколю и припаяем свои, идущие от драйвера светодиода, изолируем термоусадочными трубками.

Паяльником проделаем пару отверстий для проволоки, которая будет удерживать всю конструкцию.

Далее,используем клеммы, обжимаем, подключаем к светодиоду соблюдая полярность. Проверяем. Не рекомендуется смотреть на включенный светодиод. Сила света очень велика и может нанести вред Вашим глазам. Если все работает - собираем светильник в единое целое.

Светодиод очень яркий и бросает резкие тени. Вы можете сделать свет более гладким и мягким, используя самодельный рассеиватель. В качестве рассеивателя можно использовать множество различных материалов. Самый простой - вырежем из двухлитровой пластиковой бутылки дно, обработаем наждачной бумагой со всех сторон, что бы придать полную непрозрачность прямому свету. Делаем четыре отверстия и проволокой крепим ее к радиатору.

3. Домашняя светодиодная лампа.

В качестве источника света используем светодиоды Cree MX6 Q5 мощностью 3 Вт и светоотдачей 278 лм. Светодиод будет размещен на радиаторе размером 5х5 см, снятом с процессора старой материнской платы.


Для простоты будем использовать импульсный источник вместе с электронным адаптером, который даст необходимое напряжение и ток для питания светодиодов. Для этой цели в нашем случае было выбрано зарядное устройства нерабочего мобильного телефона имеющее, по заявлению производителя, выходное напряжение 5 В и ток 420 мА.

Для предохранения от внешних воздействий вся электронная часть будет помещена в патрон от старой лампы.

В соответствии с указаниями производителя, светодиоды Cree MX6 Q5 могут работать на максимальном токе 1 А при напряжении 4,1 В. По логике, для нормальной работы нам понадобится резистор 1 Ом, чтобы понизить напряжение примерно на один вольт тех пяти, которые дает зарядное устройство, чтобы получить искомые 4,1 В и это только при том, если зарядка выдает ток максимальной силы в 1 А.Однако, как позже выяснилось, зарядное устройство с конструктивным ограничением по силе тока в 0,6 А без проблем работает. Тестируя таким же образом зарядки для других мобильных телефонов, было обнаружено, что все они имеют ограничение на питание током, сила которого на 20-50% выше той, что указана производителем.Смысл этого заключается в том, что любой производитель будет стремиться разработать блок питания так, чтобы он не перегревался, даже если питаемое устройство будет повреждено или произойдет короткое замыкание, и самый простой способ в этом случае — ограничение тока.

Таким образом, мы имеем источник постоянного тока ограниченный 0,6 А, питаемый от переменного тока 230 В, сделанный фабричным методом и имеющий небольшие размеры. При этом во время работы он лишь незначительно нагревается.

Переходим к сборке. Для начала необходимо вскрыть блок питания для того, чтобы извлечь детали, которые будут вставлены в корпус новой лампы. Так как большинство блоков питания соединено пайкой, вскрываем блок ножовкой.

Для того, чтобы закрепить плату в корпусе лампы, в нашем случае использовался санитарный силикон. Силикон был выбран за его сопротивляемостью высоким температурам.

Перед тем, как закрыть лампу, крепим к крышке (используя болты) радиатор, к которому и был прикреплен светодиод.

Лампа готова. Потребляемая мощность составляет чуть менее 2,5 Вт, световой поток - 190 лм, что идеально подходит для экономичной, долговечной и прочной настольной лампы.

4. Светильник в коридоре.

Для освещения светодиодными светильниками прихожей мы использовал два светодиода Cree MX6 Q5, каждый из которых обладает мощностью 3 Вт и светоотдачей 278 лм и питается от старого блока питания от мобильного телефона Samsung. И хотя производителем в спецификации указана сила тока в 0,7 А, после замеров былоустановлена, что она ограничена 0,75 А.

Схема изготовления основы светильника аналогична предыдущему варианту. Вся внешняя конструкция собрана при помощи текстильной липучки, клея и пластиковых шайб от материнских плат.

Общее потребление этой конструкции составляет около 6 Вт при световом потоке 460 лм.

5. Светильник в ванной комнате.

Для ванной комнаты использовался светодиод Cree XM-L T6 с питанием от двух зарядок для телефонов LG.


Каждое из зарядных устройств может выдавать по заявлению производителя ток силой 0,9 А, но я обнаружил, что фактически сила тока равна 1 А. Оба источника питания соединены параллельно для получения тока силой 2 А.

При таких показателях светодиодный светильник будет вырабатывать световой поток в 700 лм при потребляемой мощности 6 Вт.

6. Светильник для кухни.
Если для прихожей и ванной комнаты не было необходимости для обеспечения определенного минимума освещенности, то на кухне это не так. Поэтому было решено использовать для кухни не один, а два последовательно соединенных светодиода Cree XM-L T6, каждый из которых имеет максимальную потребляемую мощность 9 Вт и максимальной световой поток 910 люменов.

Для эффективного охлаждения в нашем случае использовался радиатор, снятый со Slot 1 процессора Pentium 3, к которому были прикреплены оба светодиода при помощи термоклеяArcticAlumina. Хотя светодиоды Cree XM-L T6 могут потреблять ток силой 3 А, производитель для надежности работы рекомендует использовать ток силой 2 А, при котором они создают световой поток около 700 лм. В качестве источника питания использовался генерирующий 12В при токе 1.5A. После тестирования его при помощи резисторов, было обнаружено, что ток ограничен до значения в 1,8 А, что очень близко к искомому значению в 2 А.

Для предохранения радиатора и двух светодиодов использовались две пластиковых шайбы от материнской платы и два неодимовых магнита, снятых с поврежденного DVD-привода, закрепив их суперклеем и текстильной липучкой.

Ожидал, что такой светодиодный светильник будет выдавать 1200 лм, что сравнимо со световым потоком заменяемой люминесцентной лампой 23 Вт, однако было обнаружено, что на самом деле излучаемый свет даже более интенсивный, при потребляемой мощности около 12 Вт — почти половиной по сравнению со старой лампочкой.

7. Офисный светильник
Нам понадобится:

1. Светодиодные линейки 4 шт (на мощных Американских диодах CREE)
2. Подходящий драйвер (блок питания) 1 шт.
3. Металлический корпус будущего светильника.
4. Проводки, паяльник, ручной инструмент и крепеж.й светильник.

Можно использовать для изготовления корпус старого светильника

Либо использовать специальный алюминиевый профиль со стеклом. В этом случае драйвер устанавливается внутри профиля.

Устанавливаем диодные линейки 4 шт.

Делаем крепление к потолку (на тросиках) + ставим матовое стекло.

Вариант LED светильника в корпусе (от люминесцентного 2х36Вт)

Со стеклом

Или можно все поставить в офисный светильник 600х600 мм.

Ну и в качестве бонуса рассмотрим несколько примеров декоративных светильников на основе светодиодов.

Для декоративного светильника нам потребуются:
- 4 деревянных дощечки одинакового размера;
- дрель со сверлом 15 мм.;
- клей для дерева;
- морилка для дерева;
- кисть с карандашом;
- наждачная бумага;
- светодиодные свечи.
Прежде всего, необходимо дрелью проделать несколько отверстий в каждой дощечке, предварительно сделав разметку карандашом, - так мы получим своеобразный рисунок из кругов.

Наносим морилку на дерево.


С помощью клея соединяем 4 дощечки в светильник.

Проходимся наждачной бумагой по светильнику, чтобы придать ему винтажности.

Ставим внутрь светильника светодиодные свечи.

Ночник готов.

9. Светильник в восточном стиле.
В качестве плафонов для светильников, используем банки от клея пва.


Нам понадобятся:
- 2-3 банки из-под клея ПВА
- патроны, провод
- ножницы, острый нож
- горячий клеевой пистолет
- бамбуковые салфетки или соломенные потолочные плитки


Для начала надо разрезать салфетки на куски нужных размеров.

На основании банки маркером обвести патрон со светодиодом в 1 Ватт и вырезать круг ножом.

Затем при помощи горячего клеевого пистолета приклеиваем салфетки к банкам.

К пустым местам приклеиваем тесьму.

На этом этапе уже можно посмотреть, как будет светиться.

Осталось задекорировать на стыках тесьму деревянными бусинами.

В целях безопасности нужно насверлить отверстий для вентиляции. Можно побольше, их все равно не будет видно.

Вот и все, светильник готов.

10. Необычный декоративный светильник.

Изготовление светильника своими руками, было начато с нанесения предварительных эскизов на бумагу. Было желание, чтобы светильник не только был изогнут в плоскости, но и в пространстве, и имел причудливую форму 3d волны.

После того как эскиз на бумаге готов, приступаем к изготовлению светильника. Была измерена каждая труба на рисунке, и по этим размерам производилась резка труб. Чтобы получить необходимые углы, из бумаги вырезались шаблоны и крепились скотчем на трубе.


Все трубы были выложены на столе, и сделана подгонка относительно формы волны

Пропилы делались на стационарной циркулярной пиле. Таким образом получается ровные пропилы без задиров шириной 2 мм.

Теперь нужно соединить все трубы в одно целое. Главная задача сделать плавные изгибы, для этого не помешает применить шаблон (лист ДВП) на столе.

Поскольку трубы картонные, то соответственно соединять их можно при помощи клея ПВА, но я бы рекомендовал использовать клеи которые по крепче и быстрее застывают (момент, суперклей).

С обратной стороны на саморезы были привинчены деревянные планки, чтобы самодельный светильник можно было повесить на стену. И в каждой трубе были просверлены отверстия для вывода проводов от светодиодных лент.

Окраска труб производилась обычной краской в баллончике. Использовался красный цвет, поскольку стена, на которой должен быть расположен светильник, была белой, то хотелось получить некий контраст.

Краска высыхает очень быстро, по этому можно приступать к монтажу светодиодов. Главное запомните, что разрезать светодиодную ленту можно только в специально отмеченных местах. Ленту заранее необходимо разметить, чтобы ее хватило на все 12 труб.

Припаиваем к “+” контакту красные провода, а к “-” черные, чтобы в последствии не перепутать полярность.

Светодиодные полоски размещаем внутри труб и фиксируем клейкой стороной к стенке трубы, а провода выводим через заранее проделанные отверстия. Остается только параллельно соединить все провода (красные соединить с красными, а черные с черными) и подключить к блоку питания.

Теперь пришло время, чтобы повесить самодельный светильник на стенку.
Светильник готов.


При любой работе, а также во время отдыха нужен хороший свет. Можно приобрести светильник, но иногда это стоит недешево. В магазине вместо готового светильника можно приобрести светодиодную ленту. Она стоит относительно недорого и режется на куски любой длины. Если поместить ее в корпус или закрепить другим способом, то получится самодельный светильник со светодиодной лентой. Такую лампу можно взять с собой в палатку на рыбалку. В походных условиях светодиодный светильник подключается к автомобильному аккумулятору.

Область применения самодельных LED светильников

Самодельные светодиодные светильники под светодиодную ленту можно использовать вместо обычных:

  • подсветка рабочего места при выполнении мелких работ в мастерской или гараже;
  • подсветка сверху аквариума (если лента водозащищенная или в герметичном корпусе, то светильник можно опустить в воду);
  • подсветка рассады или комнатных растений зимой;
  • ночник или настольная лампа;
  • подсветка выключателей и розеток;
  • освещение клавиатуры компьютера;
  • для замены люминесцентных ламп.

В сети Интернет можно найти много других видов торшеров и потолочных люстр из светодиодной ленты с фото и видео, а также отзывы людей, которые собирали и пользовались такими лампами.

Виды и параметры светодиодных лент

Варианты расцветок светодиодной ленты

Светодиодные ленты выпускаются разного исполнения по типу защищенности. Они могут быть разной яркости и различного цвета, который определяется цветовой температурой – от теплого белого (2700К) до холодного (6800К), а также цветные или способные менять свой цвет – ленты RGB. Это дает возможность подобрать тип устройства для конкретных целей.

Устройство светодиодной ленты

Светодиодная лента – это гибкая пластиковая полоска с нанесенными на ней токопроводящими полосками. Две расположены по краям и к ним производится подключение. Остальные соединяют светодиоды и резисторы между собой. Они расположены группами – три светодиода, соединенных последовательно, и резистор, служащий для ограничения тока, протекающего через них.


Параметры светодиодной ленты

Саму полоску можно разрезать на участки, кратные трем светодиодам. В этих местах есть отметки, указывающие место реза и контактные площадки, к которым припаиваются или подключаются с помощью коннекторов провода.

Светодиоды могут быть покрыты слоем силикона с одной или двух сторон. Это определяет степень защиты от внешних воздействий. С обратной стороны на полосу нанесен клеящий слой, как на двухстороннем скотче. С его помощью светодиоды крепятся к основанию.

Самое распространенное напряжение питания – постоянное, 12В. Встречаются конструкции, рассчитанные на подключение к напряжению 24В и более высокое, но это малораспространенные конструкции.

Типы применяемых светодиодов

Светодиоды и резисторы в ленте используются серии SMD, без выводов. Светодиоды при производстве используются различного размера, который определяет маркировку ленты – 5050 и 3528. Эти цифры показывают размер светодиода в десятых долях миллиметра


Наглядное отличие 5050 и 3528

Мнение эксперта

Алексей Бартош

Задать вопрос эксперту

Чем больше размер, тем выше яркость и потребляемые ток и мощность. Она зависит также от количества светодиодов на метр длины.

Соответственно, маркировка ленты SMD 5050 с плотностью 60 светодиодов означает, что на метр длины установлены 60 светодиодов SMD 5050.

Контроллеры, блоки питания для светодиодных лент


контроллер и блок питания

Так как светодиодная лента рассчитана на постоянное напряжение 12В, то для подключения необходим блок питания или контроллер.

Важно! При включении светодиодной ленты в сеть 220 вольт, она мгновенно перегорит!

Блоки питания производятся разной мощности и формы. От маломощных, похожих на зарядные устройства от планшета до мощных конструкций в металлическом корпусе со встроенными кулерами.


Мощность блока питания светодиодных лент

Некоторые блоки питания оснащаются диммерами и пультами дистанционного управления. Для лент RGB необходим RGB-контроллер, позволяющий управлять цветом.

Есть модели с управлением по WiFi, с цветомузыкальными эффектами, например, ARILUX® AL-LC01.

Если нет в наличии специального блока, то можно использовать:

  • Любой трансформатор с выходным напряжением 12В. К выходу необходимо подключить диодный мост и сглаживающий конденсатор.
  • Блок питания компьютера как в самом компьютере, так и отдельно.
  • Если нужны 3-6 светодиодов, то для ограничения тока можно использовать конденсатор, а также диодный мост и конденсатор, сглаживающий пульсации свечения. Такая схема применяется в светодиодных лампах, устанавливаемых вместо ламп накаливания. Емкость конденсатора можно вычислить с помощью онлайн-калькулятора.
  • Сделать из платы неисправной энергосберегающей лампы.
  • Соединить последовательно 20 кусочков светодиодной ленты и подключить через диодный мост и сглаживающий конденсатор в сеть 220В.

Подготовка материалов и деталей


создание светильника своими руками

Перед началом работы нужно определить необходимое количество и яркость светодиодной полоски, а также мощность блока питания.

Прежде всего, нужно определить длину. Для светильников, используемых в разных местах нужны:

  • ночник и подсветка выключателей и розеток – отрезок в три светодиода;
  • аквариумная подсветка – по длине стенки;
  • подсветка грядки с рассадой – несколько кусков, длиной, равной длине грядок;
  • компьютерная клавиатура – по длине клавиатуры;
  • для замены люминесцентной лампы необходимо несколько кусков, длиной, равной длине лампы.

Яркость ленты, размер и плотность светодиодов определяется исходя из конкретных условий.

Мощность блока питания должна быть не меньше мощности светодиодного светильника, а, желательно, на 20% больше. Это необходимо для более надежной работы блока.

Кроме того, понадобятся провода, термоусадочная трубка для изолирования места подключения, паяльник с оловом и канифолью или коннектор для подключения.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Внимание! Паять ленту кислотой нельзя! Пары кислоты окисляют и разрушают провода, а также могут привести к короткому замыканию.

Если светильник будет использоваться в аквариуме для внутренней подсветки, то понадобиться прозрачная трубка и силиконовый герметик для обеспечения герметичности конструкции.После разработки конструкции будущего светильника и подготовки всех инструментов и материалов собирается сам светильник.

Иногда весь процесс сборки заключается в наклеивании ленты на основание, например, при подсветке клавиатуры, находящейся на выдвижной полке под столом.

В других случаях необходимо светильник необходимо изготовить или переделать существующий.

Особенности и этапы выполнения монтажных работ

Монтаж и подключение светильника из светодиодной ленты имеет ряд особенностей:

  • Блок питания должен располагаться как можно ближе к светодиодам. Чем длиннее провода, тем больше потери напряжения в них, что приводит к потерям яркости светильника.
  • Желательно изолировать светодиоды от основания, если оно металлическое.
  • При подключении устройства прямо от сети 220В (через конденсатор) использовать только ленту, покрытую силиконом с двух сторон.

Осторожно! На такой ленте присутствует высокое напряжение, поэтому все манипуляции с ней производятся в отключенном состоянии.

Что делать, если нет готовой светодиодной ленты

Если нет готовой светодиодной ленты, то ее можно сделать самостоятельно.

Для этого необходимое количество светодиодов необходимо соединить последовательно, и подключить к ним токоограничивающее сопротивление. Собрать такую конструкцию можно на полоске гетинакса или текстолита, где для монтажа светодиодов сверлятся отверстия. Такое устройство можно собрать на любое необходимое напряжение и количество светодиодов.


По статистическим данным, было выявлено, что стоимость светодиодных светильников значительно понизилась. Такие показатели повлекли за собой увеличение приобретения высокоэкономичных средств освещения в частные дома и квартиры. Тем, кто отлично управляется с паяльником, вовсе не потребуется поход в магазин для того, чтобы обустроить свое жилье, так как можно создать светильник своими руками, без обращения к заводским изделиям. Таким образом можно сэкономить большую сумму денег и подобрать дизайн прибора такой, который будет подходить под интерьер квартиры.

Схема светодиодного светильника.

У светодиодов есть своя особенность, заключающаяся в режиме работы постоянного тока и в низкой степени напряжения. Потому для осуществления процесса освещения преимущественно используются такие устройства, как блоки питания. Некоторые самостоятельно паяют электрические схемы на платах, что не так уж просто, особенно для тех, кто не знаком с этой сферой деятельности.

Создавая светильник своими руками, лампу или любой другой осветительный прибор, нужно брать в учет тот факт, что одна треть от такой единицы, как номинальная мощность, будет уходить на преобразование светового потока, остальные же части нужны для тепловых потерь.

Важно помнить о том, что при перегреве светодиодов может произойти сокращение срока работы. Собирая самостоятельно любую конструкцию из светодиодов, должно предусматриваться отведение тепла от всей конструкции во время подачи питания.

Какие светодиоды стоит использовать?

Таблица разновидностей светодиодов.

Первоначально желательно выбрать определенный вид светодиодов, который потребуется. Если рассматривать мощные и маломощные, то первый вид намного выгоднее, из-за того что трудоемкость выше. Отношение маломощных к мощным составляет 20:1. По таким показателям можно сделать вывод о том, что с маломощными светодиодами предстоит намного больше спаивания. Среди мощных светодиодов можно выделить пару разновидностей, одни из которых предназначены для выводных монтажных работ, а другие — для поверхностных. В большинстве случаев используют выводные, так как с ними монтажные работы проводятся намного быстрее.

Источники питания

Для долговечности светодиодов нужен отличный драйвер, а по-другому его можно назвать источником питания. Драйвер может быть корпусным и бескорпусным, с присутствием гальванической развязки и без нее. Если рассматривать именно переделку светильников, то желательно применять вид бескорпусного драйвера, в котором идет гальваническая развязка.

Вид без корпуса очень полезен тем, что он компактен по размеру, а также имеет меньшую степень нагревания. Но есть и свои определенные недостатки, которые проявляются в сложности при креплении.

Использование гальванической развязки, как правило, требуется для обеспечения безопасности, так как в этом случае можно избежать удара током. При отсутствии такой технологии некоторые получают минимальные удары электрического разряда.

Электрическая схема светодиодного светильника.

При выборе драйверов желательно обращать свое внимание на указание минимального и максимального количества светодиодов, которое можно подвести к подключению. Если же такие данные отсутствуют, то стоит просматривать выходные показатели напряжения источника питания.

Источник питания может быть двух видов, один из которых состоит из фильтра электромагнитной помехи, а второй, соответственно, его не имеет. Устройства, которые не имеют фильтров, в большей степени обладают помехами электромагнитных волн и проведения частот на приемники.

Использование радиатора для светодиодов

Для того чтобы пользоваться светодиодом успешно и долго, стоит применять радиаторы, так как они такие же важные составляющие процесса, как и источники питания. Радиатор должен быть выполнен исключительно из алюминия. Найти такой материал очень просто, так как у каждого человека найдется старая посуда из алюминия. Для того чтобы можно было рассеять тепло со светодиода, нужно брать в учет именно размер площади, а не толщину. Стоит отметить, что на компьютерных кулерах установлены вентиляторы, так как без такого устройства тепло от светодиода будет отводиться с минимальной скоростью.

Процесс изготовления светильника своими руками

Перед тем как начать разработку светильника самостоятельно, желательно подготовить все необходимые инструменты. В частности, желательно обзавестись:

Схема корпуса светильника.

  • базовыми и запасными светодиодами;
  • микротрансформатором;
  • мультиметром;
  • красными светодиодными лампочками;
  • резистором на 100 Ом;
  • конденсатором на 400 мкФ и на 10 мкФ;
  • патроном;
  • обезжиривателем;
  • паяльником;
  • монтажным клеем;
  • доской;
  • абажуром.

Первоначально желательно провести проверку каждого светодиода, который будет включен в цепь, и качество питающего напряжения в сетевом кабеле. Чтобы осуществить такой процесс, стоит использовать микротрансформатор. Таким образом, при настраивании и при тестовой проверке будущего прибора освещения регулировка будет проводиться намного плавне.

Для того чтобы измерять, падает напряжение при постоянном токе и воздействии на резистор или нет, и для точного расчета тока диодов применяют мультиметр. Как правило, при самостоятельной сборке стараются использовать шестивольтовые светильники, но нередко могут понадобиться и те, которые рассчитаны на 12 вольт.

Сами же диоды должны быть высокого качества, чтобы можно было избежать неприятного голубоватого свечения, которое не просто испортит внешний вид светильника, но также и навредит глазам.

Схема подключения светодиодных частей на корпус светильника.

Схему сборки можно назвать очень простой и без потери для драйвера. Единственный недочет состоит в отсутствии изоляции у проводов, то есть сам светильник из светодиодов может быть подвержен токовым ударам. Ориентируясь на последние данные, стоит учитывать, что желательно беречь лампу от падения, но впоследствии схема может быть модернизирована.

  1. Резисторы нужны для защиты платы при подключении к сети, чтобы избежать скачка напряжения. В случае его отсутствия желательно применение крошечного выпрямительного моста.
  2. Использование конденсатора 400 мкФ требуется для того, чтобы установить энергию на нужном уровне, которая требуется для передачи и дополнительного добавления ламп, при свободной пропускной способности. Перед работой желательно убедиться в том, что в работе идет именно вид номинального напряжения, которое, как правило, вполовину больше обычного тока в сети.
  3. Применение конденсатора 10 мкФ нужно для создания идеального источника света, а также для исключения таких последствий, как блики и мигания. Высота номинального напряжения в этом случае должна превышать показатели предыдущего конденсатора вдвое.

Если нет возможности приобретения нового патрона, его можно изъять из старой лампы. Для этого нужно аккуратно разбить лампочку, причем так, чтобы не повредилась гнездовая часть патрона. После такой процедуры сам патрон стоит защитить и обработать при помощи обезжиривателя. Важно, что перед установкой отверстие в патроне проверяется еще раз на наличие остатков лампы, которые могут навредить будущей системе освещения, и желательно провести дополнительную обработку при помощи ацетона или спирта.

Крепление патрона к резистору и транзистору

Далее дело идет за паяльными работами. Посредством паяльника проводится установка крошечного выпрямителя, причем материалы должны быть заранее подготовлены и находиться под рукой. Поверхность обрабатывается в обязательном режиме, а сами действия должны быть максимально точны и аккуратны, для того чтобы исключить повреждения уже установленных деталей.

Для того чтобы провести термоусадку, применяют любой вид монтажного клея, так как материал должен быть предназначен для проведения подобных действий, и ни в коем случае не канцелярского назначения.

Установка светодиодных ламп считается самым важным и интересным моментом во всей сборке светильника. Основой будет служить заранее купленная или же приготовленная от старых приборов доска. Если она принадлежала старым конструкциям, то, соответственно, доска должна быть очищена от деталей и различных заусенцев.

Проводя и подключая каждый контакт, их стоит проверять и очищать, если сигнал не поступает. Остается совсем немного — и светильник сможет радовать своего создателя. Для того чтобы завершить работу, нужно попросту собрать все детали, которые имеются. Если быть точнее, то каждая деталь припаивается к планшетке и к устройству резистора. Далее все изолируется при помощи клея, проверяются соединения между диодами для правильного распространения света.