Время жизни arp. Протокол ARP и «с чем его едят» (дополнено)

Всем привет! Сегодня я расскажу, как посмотреть arp таблицу в Windows. Что такое arp - это протокол распознавания адреса, предназначен для преобразования IP-адресов в MAC-адреса, часто называемые также физическими адресами. Ранее я уже рассказывал, как выглядит arp таблица cisco . Думаю, что многим коллегам, кто только начинает знакомиться с сетевой инфраструктурой данной операционной системы, данная информация окажет хорошее подспорье, для формирования фундамента. Тут главное понимать принцип работы и назначения, все остальное уже нюансы различных вендоров.

Важной особенностью интерфейса Ethernet является то, что каждая интерфейсная карта имеет свой уникальный адрес. Каждому производителю карт выделен свой пул адресов в рамках которого он может выпускать карты. Согласно протоколу Ethernet, каждый интерфейс имеет 6-ти байтовый адрес. Адрес записывается в виде шести групп шестнадцатеричных цифр по две в каждой (шестнадцатеричная записи байта). Первые три байта называются префиксом, и именно они закреплены за производителем. Каждый префикс определяет 224 различных комбинаций, что равно почти 17-ти млн. адресам.

В сетях нет однозначного соответствия между физическим адресом сетевого интерфейса (MAC адресом сетевой карты) и его IP-адресом. Поиск по IP-адресу соответствующего Ethernet-адреса производится протоколом ARP, функционирующим на уровне доступа к среде передачи. Протокол поддерживает в оперативной памяти динамическую arp-таблицу в целях кэширования полученной информации. Открываем в Windows командную строку .

Как посмотреть arp таблицу

Вводим команду

Где вы слева видите ip адрес, а правее видите Физический адрес (mac адрес). Это и есть arp таблица windows.

По умолчанию данный кэш живет 300 секунд

очистка arp таблицы

Делается с помощью команды

И видим,произошла очистка arp таблицы

Как добавить свою запись в arp таблицу

Делается это с помощью команды

arp -s 157.55.85.212 00-aa-00-62-c6-09

Увеличиваем время жизни arp записи Windows 7 по 10

Давайте рассмотрим на примере Windows 8.1 как можно увеличить время жизни arp записей, для чего это может быть нужно, ну, чтобы разгрузить сеть лишним трафиком, если у вас в сети мало, что меняется. Делается это все через реестр Windows

Нажимаем Win+R и вводим regedit и переходим в ветку

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Тут вам для изменения периода хранения данных в кэше ARP, нужно создать Параметр DWORD, если у вас разрядность системы 32, то создаем 32, если 64, то такой же.

Задаем имя ArpCacheLife и ставим значение в секундах, после чего нужно перезагрузиться и у вас поменяется время жизни arp записи.

Вот полная справка команды arp

Отображение и изменение таблиц преобразования IP-адресов в физические,
используемые протоколом разрешения адресов (ARP).

ARP -s inet_addr eth_addr
ARP -d inet_addr
ARP -a [-N if_addr] [-v]

  • -a Отображает текущие ARP-записи, опрашивая текущие данные протокола. Если задан inet_addr, то будут отображены IP и физический адреса только для заданного компьютера. Если ARP используют более одного сетевого интерфейса, то будут отображаться записи для каждой таблицы.
  • -g То же, что и параметр -a.
  • -v Отображает текущие ARP-записи в режиме подробного протоколирования. Все недопустимые записи и записи в интерфейсе обратной связи будут отображаться.
    inet_addr Определяет IP-адрес.
  • -N if_addr Отображает ARP-записи для заданного в if_addr сетевого интерфейса.
  • -d Удаляет узел, задаваемый inet_addr. Параметр inet_addr может содержать знак шаблона * для удаления всех узлов.
  • -s Добавляет узел и связывает адрес в Интернете inet_addr с физическим адресом eth_addr. Физический адрес задается 6 байтами (в шестнадцатеричном виде), разделенных дефисом. Эта связь является постоянной eth_addr Определяет физический адрес.
  • if_addr - Если параметр задан, он определяет адрес интерфейса в Интернете, чья таблица преобразования адресов должна измениться. Если параметр не задан, будет использован первый доступный интерфейс.

RARP

Reverse ARP, обратный ARP протокол служит для того, чтобы по имеющемуся MAC адресу узнать IP адрес. Этот протокол используется в бездисковых машинах (https://ru.wikipedia.org/wiki/Бездисковая_рабочая_станция), загружающихся по сети. Первым делом такая машина должна узнать свой IP адрес, и параметры сети, чтобы она могла обратиться по сети, допустим к TFTP серверу, с которого она будет скачивать загрузочную запись. Единственное, что знает о себе эта машина - её MAC адрес.

Если машина обменивается информацией с другим равноценным устройством в одной и той же сети, это соединение требует наличия физического или MAC-адреса. Вместе с тем приложение, отвечающее за связь, требует использования какого-либо механизма, способного связать IP-адрес с MAC-адресом.

Этот механизм осуществляется с помощью протоколов разрешения адресов (ARP). Благодаря им происходит трансляция IP-адреса узла назначения, который информирует источник MAC-адреса. Таким образом, протоколы ARP способствуют связи двух устройств при их одновременном подключении в сеть.

Как это работает?

Это означает, что каждый раз, когда машина А хочет послать пакеты данных машине B, A должна послать пакет ARP для запроса MAC-адреса B. Вместе с тем это неизбежно приведет к увеличению нагрузки на сеть и утяжелению трафика.

Для того чтобы уменьшить трафик и затраты на сетевые подключения, компьютеры, использующие ARP-протокол, поддерживают кэш недавно приобретенных адресов привязки IP_to_MAC, то есть они не должны использовать ARP повторно.

Вместе с тем некоторые уточнения ARP возможны: когда машина А хочет послать данные машине B, возможно, что B собирается посылать ответные данные А в ближайшем будущем. Поэтому, чтобы избежать использования ARP для машины B, A должна сохранить его связующий адрес IP_to_MAC в специальном пакете при запросе на MAC-адрес B. Так как A передает свой первоначальный запрос на MAC-адрес B, каждая машина в сети должна извлекать и хранить в своем кэше адрес IP_to_MAC.

Когда устройство находится в сети (например, если операционная система перезагружается), оно может транслировать адрес связывания так, что все другие машины могут сохранить его в своих настройках. Это позволит не использовать повторно протоколы ARP, которые могли бы понадобиться при подключении других новых устройств.

Пример отображения использования протокола разрешения адресов

Можно рассмотреть сценарий, когда компьютер пытается связаться с некоторыми удаленными устройствами, и ранее никакого обмена IP между ними не осуществлялось. Именно поэтому должен быть применен ARP-протокол - чтобы определить MAC-адрес удаленной машины.

Сообщение запроса ARP (который идет от IP-адреса A.A.A.A к B.B.B.B) транслируется по локальной сети с типом протокола Ethernet. Протоколы ARP исходят от всех машин, кроме целевой, которая направляет ответное сообщение на запрос. Этот ответ содержит в себе IP-адрес B.B.B.B, т.е. аппаратный адрес источника Ethernet, после чего будет налажена связь между устройствами.

Протокол ARP и его назначение - выводы

Как можно увидеть из описания выше, протокол разрешения адресов используется для наладки взаимодействия между различными устройствами в сети. Другими словами, это технология, без которой нормальное подключение не представляется возможным. Но возможна ли работа протокола ARP без других параметров сети? Определенно, невозможна. Поэтому следует рассмотреть другие протоколы, играющие важную роль.

Протокол восстановления обратного адреса

RARP является протоколом, по которому физический компьютер в локальной сети может запросить свой IP-адрес из таблицы Address Resolution Protocol или кэш-сервера шлюза. создает таблицу в шлюзе или маршрутизаторе локальной сети, которая отображает физический адрес машины (или адрес управления доступом к среде - MAC) относительно соответствующего протокола. Когда новое устройство подключается в сеть, его RARP-клиент создает на сервере запрос для отправки его IP-адреса. Предполагая, что запись была создана в таблице маршрутизатора, сервер RARP возвращает IP-адрес на машину, которая может хранить его для дальнейшего использования. Таким образом, протокол разрешения адресов ARP непрерывно связан с RARP.

Детальный механизм

И машина, которая выдает запрос, и сервер, который отвечает на него - все они используют физические сетевые адреса во время сеанса связи. Как правило, запрашивающая сторона не знает физический адрес. Таким образом, запрос транслируется на все машины в сети. Затем запрашивающая сторона должна идентифицировать себя по отношению к серверу. Для этого может быть использован серийный номер CPU или физический адрес сетевой машины. При этом использование физического адреса в качестве уникального идентификатора имеет два преимущества.

Эти адреса всегда доступны и не должны быть связаны в коде начальной загрузки.
Поскольку идентифицирующая информация зависит от сети, а не от поставщика CPU, все машины по данной сети будет иметь уникальные идентификаторы.

Действие RARP во времени

Так как RARP использует физическую сеть напрямую, никакое другое программное обеспечение протокола не будет отвечать на запрос или ретранслировать его. Программное обеспечение RARP должно единолично справиться с этими задачами. Некоторые рабочие станции, которые полагаются на RARP для загрузки, могут неоднократно повторять попытку неопределенное время, пока не получат ответ. Другие реализации имеют отказ после нескольких попыток, чтобы избежать перегрузки сети ненужными трансляциями.

Протоколы IP/ICMP/ARP

Протокол ICMP связывает механизм, шлюзы и хосты, которые используются для управления соединением или получения отчета об ошибках. Интернет-протокол обеспечивает сигнал, идущий от шлюза к шлюзу, пока не достигнет точки, которая может доставить его непосредственно в конечный пункт назначения. Если шлюз не может направлять или доставлять данные, или же он обнаруживает такое необычное состояние, как перегрузка сети, он должен выдать сообщение об этом, чтобы принять меры, позволяющие избежать или исправить эту проблему.

Сообщений (ICMP) позволяет шлюзам осуществлять передачу ошибок или управлять сообщениями для других шлюзов или хостов. Таким образом, ICMP обеспечивает связь между протоколами Интернет на обоих соединяемых компьютерах.

Этот специальный механизм был добавлен разработчиками в дополнение к TCP/IP-протоколам. Он позволяет использовать шлюзы в Интернете, чтобы сообщить об ошибках или предоставить информацию о чрезвычайных обстоятельствах. Сам по себе IP-протокол не содержит ничего, что может помочь проверить связь с отправителем или узнать о сбоях.

Протоколы TCP/IP

TCP/IP-протоколы предоставляют средства, способные помочь сетевым администраторам или пользователям идентифицировать проблемы сети. Один из наиболее часто используемых инструментов отладки вызывает запрос ICMP и получает ответное сообщение. В то же время хост или шлюз посылает эхо-сообщение с запросом ICMP на указанный адрес. Любая машина, которая получает эхо-запрос, формулирует отклик и возвращает к исходному отправителю. При этом ответ содержит копию данных, передаваемых в запросе, а также связанный с ними отклик.

Этот протокол может быть использован для проверки того, доступен ли адресат и возможна ли с ним связь. В свою очередь, протоколы ARP - это используемые в дополнение к TCP/IP и необходимые для осуществления корректной связи между устройствами в сети.

Если компьютер контактирует с другим аналогичным устройством в той же сети, требуется физический или MAC-адрес. Но поскольку приложение предоставило IP-адрес получателя, ему нужен какой-то механизм для его привязки с MAC-адресом. Это делается по протоколу разрешения адресов (ARP). IP-адрес узла назначения является широковещательным, а узел-получатель сообщает источник его MAC-адреса.

Это значит, что в каждом случае, когда машина A намерена передать пакеты данных устройству B, она вынуждена отправить ARP-пакет для разрешения MAC-адреса B. Следовательно, это слишком сильно увеличивает нагрузку на трафик, поэтому для снижения стоимости связи, компьютеры, которые используют протоколы ARP, сохраняют кеш недавно приобретенных привязок адресов IP_to_MAC, т. е. они не должны повторно использовать этот протокол.

Современный вид

Сегодня используются несколько усовершенствований протокола ARP и его назначения. Так, когда машина A хочет отправить пакеты устройству B, возможно, что B отправит данные для A в скором времени. По этой причине, чтобы избежать ARP для машины B, A должна выполнить привязку адреса IP_to_MAC при запросе MAC-адреса B в специальном пакете.

Поскольку A направляет свой изначальный запрос для MAC-адреса B, каждый компьютер в сети должен извлекать и хранить в своем кеше привязку адреса IP_to_MAC A. Когда в сети появляется новый компьютер (например, при перезагрузке операционной системы), он может транслировать эту привязку, чтобы все остальные машины могли хранить его в своих кешах. Это позволит устранить множество ARP-пакетов всеми другими машинами, когда они хотят общаться с добавленным устройством.

Вариации ARP-протокола

Рассмотрим сценарий, при котором компьютер делает попытку связаться с какой-либо удаленной машиной с помощью программы PING при том, что ранее не было обмена IP-дейтаграммами между этими устройствами, и ARP-пакет должен быть отправлен для идентификации MAC-адреса удаленного компьютера.

Сообщение запроса Address Resolution Protocol (которое выглядит как обращение A.A.A.A к B.B.B.B - IP-адресам) транслируется в локальной сети с использованием протокола Ethernet типа 0x806. Пакет отбрасывается всеми машинами, за исключением целевой, которая отвечает сообщением ответа APR (AAAA - hh: hh: hh: hh: hh: hh где hh: hh: hh: hh: hh: hh - адрес источника Ethernet). Этот ответ является одноадресным для машины с IP-адресом B.B.B.B. Поскольку сообщение запроса протокола APR включало аппаратный адрес (а именно - источника Ethernet) запрашивающего компьютера, целевому устройству не требуется другое сообщение, чтобы понять это.

Взаимосвязь с другими протоколами

Как только вы поймете, для чего нужен протокол ARP, следует рассмотреть его взаимодействие с другими элементами сети.

RARP - это протокол, с помощью которого физическая машина в локальной сети может делать запрос, чтобы узнать свой IP-адрес из таблицы протокола или кэширования сервера шлюза. Это необходимо, так как на устройстве не может присутствовать постоянно установленный диск, где оно может постоянно хранить свой IP-адрес. Сетевой администратор создает таблицу в маршрутизаторе шлюза локальной сети, который сопоставляет адреса физического компьютера (либо управления доступом к среде - MAC) соответствующим «айпи». Когда новая машина настроена, ее клиентская программа RARP запрашивает с сервера RARP на маршрутизаторе для отправки его IP-адрес. Предполагая, что запись была настроена в таблице маршрутизатора, данный сервер RARP вернет «айпи» на компьютер, который может сохранить его для будущего использования. Таким образом, это тоже своеобразный протокол определения адреса.

Механизм в деталях

И машина, выдающая запрос, и сервер, на него отвечающий, использует физические сетевые адреса в процессе их короткой связи. Обычно запрашивающий компьютер не знает его. Таким образом, запрос передается всем машинам в сети. Теперь запросчик должен идентифицировать себя уникально для сервера. Для этого можно использовать либо серийный номер процессора, либо физический сетевой адрес устройства. При этом использование второго в качестве уникального идентификатора обладает двумя преимуществами:

  • Данные адреса всегда доступны и не обязательно связаны с кодом начальной загрузки.
  • Поскольку идентификационная информация зависит от сети, а не от ЦП, все машины в данной сети будут предоставлять уникальные идентификаторы.

Как и сообщение протокола ARP, запрос RARP отправляется с одного компьютера на другой, инкапсулированный в части данных сетевого кадра. Рамка Ethernet, содержащая его, имеет обычную преамбулу, Ethernet-источник и адреса назначения, а также поля типа пакета перед кадром. Кадр кодирует значение 8035, чтобы идентифицировать его содержимое как сообщение RARP. Часть данных кадра включает в себя 28-октетное сообщение.

Отправитель отправляет запрос RARP, который указывает себя как инициатор запроса и целевую машину, и передает свой физический сетевой адрес в поле целевого аппаратного адреса. Все устройства в сети получают запрос, но только те из них, кто уполномочен предоставлять RARP, обрабатывают запрос и отправляют ответ. Такие машины известны неофициально как серверы данного протокола. Для успешной реализации протоколов ARP/RARP сеть должна содержать как минимум один такой сервер.

Они отвечают на запрос, заполняя поле адреса целевого протокола, изменяя тип сообщения от запроса до ответа и отправляя ответ прямо на машину, отправляющую запрос.

Синхронизация транзакций RARP

Поскольку RARP напрямую использует физическую сеть, никакое иное программное обеспечение протокола не должно откликаться на запрос или повторно передавать его. ПО RARP должно выполнять эти задачи. Некоторые рабочие станции, полагающиеся на такой протокол для загрузки, предпочитают повторять попытку до бесконечности, пока не получат ответ. Иные реализации объявляют об отказе после нескольких попыток предотвратить наполнение сети ненужной трансляцией.

Преимущества Mulitple RARP Servers: большая надежность.

Недостаток: перегрузка может возникнуть, когда все серверы ответят.

Таким образом, чтобы избежать недостатков, можно использовать первичный и вторичный серверы. Каждому компьютеру, который запрашивает запрос RARP, назначается первичный сервер. Обычно он отвечает на все позывы, но если он терпит неудачу, тогда запросчик может взять тайм-аут и выполнить ретрансляцию запроса. Если второй сервер получает вторую копию запроса в течение короткого времени первого, он отвечает. Но все же может возникнуть проблема, при которой по умолчанию реагируют все вторичные серверы, тем самым перегружая сеть. Таким образом, проблема состоит в том, чтобы избежать одновременной передачи ответов с обоих серверов. Каждый вторичный сервер, который принимает запрос, вычисляет случайную задержку и затем отправляет ответ.

Недостатки RARP

Поскольку он работает на низком уровне, он требует прямых адресов в сети, что затрудняет работу приложений для создания сервера. Он не полностью использует возможности такой сети, как ethernet, которая применяется для отправки минимального пакета. Поскольку ответ с сервера содержит только одну небольшую часть информации, 32-разрядный интернет-адрес RARP формально описан в RFC903.

ICMP-протокол

В этом протоколе зашифрован механизм, который шлюзы и хосты используют для обмена информацией об управлении или ошибкой. Интернет-протокол обеспечивает надежную службу передачи данных без установления соединения, датаграмма перемещается от шлюза к шлюзу, пока не достигнет того, которое может доставить его непосредственно до конечного пункта назначения.

Если шлюз не может маршрутизировать или доставлять дейтаграмму, или если он обнаруживает необычное условие, такое как перегрузка сети, что влияет на его способность перенаправлять дейтаграмму, ему необходимо дать указание исходному источнику принять меры, чтобы избежать или устранить проблему.

Связующее звено

Протокол управления интернет-протоколом позволяет шлюзам отправлять сообщения об ошибках или управлять сообщениями на другие шлюзы или хосты. ICMP предоставляет связь между программным обеспечением протокола Интернета между компьютерами. Это механизм сообщений так называемого специального назначения, добавленный разработчиками к протоколам TCP/IP. Это позволяет шлюзам в Интернете информировать об ошибках либо направлять информацию о непредвиденных обстоятельствах.

Сам протокол IP не содержит ничего, чтобы помочь подключиться к тестированию отправителя или узнать о сбоях. Отчеты об ошибках и их исправлении сообщаются посредством ICMP только в отношении исходного источника. Он должен связывать ошибки с отдельными прикладными программами и предпринимать действия для устранения проблем. Таким образом, он предоставляет возможность для шлюза сообщать об ошибке. При этом он не полностью определяет действие, которое необходимо предпринять для исправления неполадок.

ICMP ограничивается в связи с исходным источником, но не с промежуточными ICMP-сообщениями. Они отправляются через Интернет в части данных дейтаграммы IP, которая сама перемещается по сети. Именно поэтому они тесно взаимосвязаны с ARP-протоколом. ICMP-сообщения маршрутизируются точно так же, как датаграммы, содержащие информацию для пользователей, не имея при этом дополнительной надежности или приоритета.

Исключение присутствует для процедур обработки ошибок, когда IP-датаграмма, несущая сообщения ICMP, не генерируется для ошибок, которые возникают из дейтаграмм, содержащих сообщения о неполадках.

Формат сообщения ICMP

Оно насчитывает в себе три поля:

  • 8-битное целочисленное поле TYPE, идентифицирующее сообщение;
  • 8-битовое поле CODE, которое предоставляет дополнительную информацию о его типе;
  • 16-разрядное поле CHECKSUM (ICMP использует одну и ту же контрольную сумму алгоритма, которая охватывает только сообщение этого протокола).

Кроме того, сообщения ICMP, информирующие об ошибках, во всех случаях включают в себя заголовок и начальные 64 бита данных дейтаграммы, вызывающих проблему.

Запросы и ответы

Протоколы TCP/IP предоставляют средства, помогающие сетевым менеджерам или пользователям идентифицировать сетевые проблемы. Один из чаще всего используемых инструментов отладки делает вызовы эхо-запроса ICMP и сообщения эхо-ответа. Хост или шлюз отправляет сообщение к определенному пункту назначения.

Любой компьютер, который принимает эхо-запрос, создает ответ, и возвращает его исходному отправителю. Запрос включает в себя необязательную область направляемых данных. Ответ имеет в себе копию данных, отправленных в запросе. Эхо-запрос и отклик, связанный с ним, могут применяться для проверки доступности достижимой цели и отклика.

Поскольку как запрос, так и ответ направляются в IP-датаграммах, успешное его получение подтверждает, что система исправно работает. Для этого должны быть соблюдены следующие условия:

  • IP-программное обеспечение источника должно маршрутизировать датаграмму;
  • Промежуточные шлюзы пунктом назначения и источником должны работать и правильно маршрутизировать дейтаграмму;
  • Должен быть запущен конечный компьютер, и на нем должно работать как программное обеспечение ICMP, так и IP;
  • Маршруты в шлюзах по обратному пути должны быть правильными.

Как это работает?

Работа протоколов ARP и ICMP тесно связана. Всякий раз, когда ошибка предотвращает маршрутизацию или доставку шлюзу датаграммы, он отправляет сообщение о недоступности адресата обратно в исходный код, а затем удаляет датаграмму. Неисправляемые неполадки в сети обычно подразумевают сбои в передаче данных. Поскольку сообщение включает в себя короткий префикс дейтаграммы, вызывавшей проблему, источник точно знает, какой из адресов недоступен. Направление может быть недоступно, поскольку аппаратное обеспечение временно не работает, отправитель сообщил несуществующий адрес назначения или потому, что шлюз не имеет маршрута к целевой сети.

Несмотря на то, что шлюзы отправляют не доходящие сообщения по назначению, если они не могут маршрутизировать или доставлять датаграммы, не все такие ошибки могут быть обнаружены. Если дейтаграмма содержит параметр исходного маршрута с неправильными данными, она может инициировать сообщение об ошибке маршрута источника.

Оценка: 4.86 Голосов: 7 Комментарии: 10

Начнем с теории…

Что такое ARP и зачем это нам

ARP (“Address Resolution Protocol” - протокол определения адреса ) - использующийся в компьютерных сетях протокол низкого уровня, предназначенный для определения адреса канального уровня по известному адресу сетевого уровня. Наибольшее распространение этот протокол получил благодаря повсеместности сетей IP, построенных поверх Ethernet, поскольку практически в 100 % случаев при таком сочетании используется ARP.

ARP протокол работает с MAC адресами. Свой индивидуальный MAC адрес есть у каждой сетевой карты.

MAC-адрес (“Media Access Control” - управление доступом к среде ) - это уникальный идентификатор, сопоставляемый с различными типами оборудования для компьютерных сетей. Большинство сетевых протоколов канального уровня используют одно из трёх пространств MAC-адресов, управляемых IEEE: MAC-48, EUI-48 и EUI-64. Адреса в каждом из пространств теоретически должны быть глобально уникальными. Не все протоколы используют MAC-адреса, и не все протоколы, использующие MAC-адреса, нуждаются в подобной уникальности этих адресов.

Рис.1. Путь к ARP таблице.

Рис.2. ARP таблица.

На Рисунке 2 мы видим ARP таблицу. В ней три записи, они добавляются автоматически и имеют следующую структуру. IP Adress – это, собственно, IP адрес компьютера сети, MAC Adress – это mac адрес этого же компьютера, и Interface, который указывает за каким интерфейсом находится данный компьютер. Обратите внимание, что напротив всех записей есть буква D. Она означает то, что эта запись динамическая и будет изменена, если изменятся какие-то данные. То есть, если пользователь случайно введет неправильный IP адрес, то просто изменится запись в ARP таблице и больше ничего. Но нам это не подходит. Нам нужно застраховаться от таких случаев. Для этого в ARP таблицу вносятся статические записи. Как это сделать? Существует два способа.

Рис.3. Добавляем Статическую запись первым способом.

Способ первый. Как обычно нажимаем красный плюс. В появившемся окне вводим IP адрес, MAC адрес и выбираем интерфейс, за которым находится данный компьютер.

Рис.4. Добавляем Статическую запись вторым способом.

Способ второй. Выбираем нужную запись, кликаем два раза левой клавишей мыши, в появившемся окне нажимаем кнопку Make Statik . Статическая запись добавлена.

Рис.5. Таблица со статическими записями.

Как видно на рисунке 5 – напротив добавленной записи отсутствует буква D. Это говорит о том, что запись статическая.

Теперь, если пользователь случайно введет не свой адрес, Mikrotik , проверив соответствие IP и МАС адреса в ARP таблице и, не найдя нужной записи, не даст пользователю выйти в интернет, тем самым наведет пользователя на мысль о том, что он, возможно, был не прав и надо бы позвонить администратору.

Еще на что хотелось бы обратить ваше внимани е: эти записи применяются для пакетов проходящих через router.

Маршрутиза́тор или роутер - сетевое устройство, которое принимает решения о пересылке пакетов сетевого уровня (уровень 3 модели OSI) между различными сегментами сети на основании информации о топологии сети и определённых правил.

Если нужно, чтобы правила применялись к Bridge(бридж), то в Bridge нужно включить функцию Use IP Firewall (рис.6.).

Бридж - это способ соединения двух сегментов Ethernet на канальном уровне, т.е. без использования протоколов более высокого уровня, таких как IP. Пакеты передаются на основе Ethernet-адресов, а не IP-адресов (как в маршрутизаторе). Поскольку передача выполняется на канальном уровне (уровень 2 модели OSI), все протоколы более высокого уровня прозрачно проходят через мост.

Рис.6 . Включение функции Use IP Firewall.

Евгений Рудченко

Ранее говорилось, что порт или интерфейс, с помощью которого маршрутизатор подключен к сети, рассматривается как часть этой сети. Следовательно, интерфейс маршрутизатора, подключенный к сети, имеет тот же IP-адрес, что и сеть (рис. 6.12). Поскольку маршрутизаторы, как и любые другие устройства, принимают и отправляют данные по сети, они также строят ARP-таблицы, в которых содержатся отображения IP-адресов на МАС-адреса.

Рисунок 6.11. RARP-сервер откликается на IP запрос от рабочей станции с МАС-адресом 08-00-20-67-92-89


Рисунок 6.12. IP-адреса приводятся в соответствие с МАС-адресами с помощью ARP-таблиц.

Маршрутизатор может быть подключен к нескольким сетям или подсетям. Вообще, сетевые устройства имеют наборы только тех МАС- и IP-адресов, которые регулярно повторяются. Короче говоря, это означает, что типичное устройство содержит информацию об устройствах своей собственной сети. При этом об устройствах за пределами собственной локальной сети известно очень мало. В то же время маршрутизатор строит таблицы, описывающие все сети, подключенные к нему. В результате ARP-таблицы маршрутизаторов могут содержать МАС- и IP-адреса устройств более чем одной сети (6.13). Кроме карт соответствия IP-адресов МАС адресам в таблицах маршрутизаторов содержатся отображение портов (рис. 6.14)

Что происходит если пакет данных достигает маршрутизатора, который не подключен к сети назначения пакета? Кроме МАС и IP-адресов устройств тех сетей, к которым подключен данный маршрутизатор, он еще содержит МАС- и IP-адреса других маршрутизаторов. Маршрутизатор использует эти адреса для направления данных конечному получателю (рис.6.15). При получении пакета, адрес назначения которого отсутствует в таблице маршрутизации, маршрутизатор направляет этот пакет по адресам других маршрутизаторов, которые, возможно, содержат в своих таблицах маршрутизации информацию о хост-машине пункта назначения.



Рисунок 6.14. Порты также заносятся в таблицу маршрутизации

Шлюз по умолчанию

Если источник расположен в сети с номером, который отличается от номера сети назначения, и источник не знает МАС-адрес получателя, то для того, чтобы доставить данные получателю, источник должен воспользоваться услугами маршрутизатора. Если маршрутизатор используется подобным образом, то его называют шлюзом по умолчанию (default gateway). Чтобы воспользоваться услугами шлюза по умолчанию, источник инкапсулирует данные, помещая в них в качестве МАС-адреса назначения МАС-адрес маршрутизатора. Так как источник хочет доставить данные устройству, а не маршрутизатору, то в заголовке в качестве IP-адреса назначения используется IP-адрес устройства, а не маршрутизатора (рис. 6.16). Когда маршрутизатор получает данные, он убирает информацию канального уровня, использованную при инкапсуляции. Затем данные передаются на сетевой уровень, где анализируется IP-адрес назначения. После этого маршрутизатор сравнивает IP-адрес назначения с информацией, которая содержится в таблице маршрутизации. Если маршрутизатор обнаруживает отображение IP-адреса пункта назначения на соответствующий МАС-адрес и приходит к выводу, что сеть назначения подключена к одному из его портов, он инкапсулирует данные, помещая в них информацию о новом МАС-адресе, и передает их по назначению.



Рисунок 6.15. Данные переправляются маршрутизатором к пункту их назначения


Рисунок 6.16. Для доставки данных используются IP-адрес пункта назначения

Резюме

  • Все устройства в локальной сети должны следить за ARP-запросами, но только те устройства, чей IP-адрес совпадает с IP-адресом, содержащимся в запросе, должны откликнуться путем сообщения своего MAC-адреса устройству, создавшему запрос.
  • Если IP-адрес устройства совпадает с IP-адресом, содержащимся в ARP-запросе, устройство откликается, посылая источнику свой МАС-адрес. Эта процедура называется ARP-ответом.
  • Если источник не может обнаружить МАС-адрес пункта назначения в своей ARP-таблице, он создает ARP-запрос и отправляет его в широковещательном режиме всем устройствам в сети.
  • Если устройство не знает собственного IP-адреса, оно использует протокол RARP.
  • Когда устройство, создавшее RARP-запрос, получает ответ, оно копирует свой IP-адрес в кэш-память, где этот адрес будет храниться на протяжении всего сеанса работы.
  • Маршрутизаторы, как и любые другие устройства, принимают и отправляют данные по сети, поэтому они также строят ARP-таблицы, в которых содержатся отображения IP-адресов на МАС-адреса.
  • Если источник расположен в сети с номером, который отличается от номера сети назначения, и источник не знает МАС-адрес получателя, то для того, чтобы доставить данные получателю, источник должен использовать маршрутизатор в качестве шлюза по умолчанию.

Глава 7 Топологии

В этой главе:

  • Определение понятия топология
  • Шинная топология, ее преимущества и недостатки
  • Топология "звезда", ее преимуществ и недостатки
  • Внешние терминаторы
  • Активные и пассивные концентраторы
  • Характеристики топологии "расширенная звезда", определение
  • длины кабеля для топологии "звезда" и способы увеличения размеров области охватываемой сетью с топологией "звезда”
  • Аттенюация

Введение

В главе 6, "ARP и RARP”, было рассказано, каким образом устройства в локальных сетях используют протокол преобразования адреса ARP перед отправкой данных получателю. Было также выяснено, что происходит, если устройство в одной сети не знает адреса управления доступом к среде передачи данных (МАС-цреса) устройства в другой сети. В этой главе рассказывается о топологиях, используемых при создании сетей.

Топология

В локальной вычислительной сети (ЛВС) все рабочие станции должны быть соединены между собой Если в ЛВС входит файл-сервер, он также должен быть подключен к рабочим станциям. Физическая схема, которая описывает структуру локальной сети, называется топологией В этой главе описываются три типа топологий шинная, “звезда" и "расширенная звезда" (рис 71 , 72)


Рисунок 7.1. Шинная топология типична для ЛВС Ethernet, включая 10Base2 и 10BaseS


Рисунок 7.2. Топология «звезда» типична для сетей Ethernet и Token Ring, которые используют в качестве центра сети концентратор, коммутатор или повторитель

Шинная топология

Шинная топология представляет собой топологию, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Такую линейную среду часто называют каналом, шиной или трассой. Каждое устройство, например, рабочая станция или сервер, независимо подключается к общему шинному кабелю с помощью специального разъема (рис. 7.3). Шинный кабель должен иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине.