Подключение трехфазного двигателя к трехфазной сети. Другие подключения электродвигателя. Использование магнитного пускателя

Бывают в жизни ситуации, когда нужно включить какое-то промышленное оборудование в обычную домашнюю сеть электропитания. Тут же возникает проблема с числом проводов. У машин, предназначенных для эксплуатации на предприятиях, выводов, как правило, три, а бывает и четыре. Что с ними делать, куда их подключать? Те, кто пытался испробовать различные варианты, убедились, что моторы просто так крутиться не хотят. Возможно ли вообще однофазное подключение трехфазного двигателя? Да, добиться вращения можно. К сожалению, в этом случае неизбежно падение мощности почти вдвое, но в некоторых ситуациях это - единственный выход.

Напряжения и их соотношение

Для того чтобы понять, как подключить трехфазный двигатель к обычной розетке, следует разобраться, как соотносятся напряжения в промышленной сети. Общеизвестны величины напряжений - 220 и 380 Вольт. Раньше еще было 127 В, но в пятидесятые годы от этого параметра отказались в пользу более высокого. Откуда взялись эти «волшебные цифры»? Почему не 100, или 200, или 300? Вроде бы круглые цифры считать легче.

Большая часть промышленного электрооборудования рассчитана на подключение к трехфазной сети Напряжение каждой из фаз по отношению к нейтральному проводу составляет 220 Вольт, совсем как в домашней розетке. Откуда же берутся 380 В? Это очень просто, достаточно рассмотреть равнобедренный треугольник с углами в 60, 30 и 30 градусов, который представляет собой векторная диаграмма напряжений. Длина самой длинной стороны будет равна длине бедра, умноженной на cos 30°. После нехитрых подсчетов можно убедиться, что 220 х cos 30°= 380.

Устройство трехфазного двигателя

Не все типы промышленных двигателей могут работать от одной фазы. Самые распространенные из них - «рабочие лошадки», составляющие большинство электромашин на любом предприятии - асинхронные машины мощностью в 1 - 1,5 кВА. Как работает такой трехфазный двигатель в трехфазной сети, для которой он предназначен?

Изобретателем этого революционного устройства стал русский ученый Михаил Осипович Доливо-Добровольский. Этот выдающийся электротехник был сторонником теории трехфазной питающей сети, которая в наше время стала главенствующей. трехфазный работает по принципу индукции токов от обмоток статора на замкнутые проводники ротора. В результате их протекания по короткозамкнутым обмоткам в каждой из них возникает магнитное поле, вступающее во взаимодействие с силовыми линиями статора. Так получается вращающий момент, приводящий к круговому движению оси двигателя.

Обмотки расположены под углом 120°, таким образом, вращающееся поле, создаваемое каждой из фаз, последовательно толкает каждую намагничиваемую сторону ротора.

Треугольник или звезда?

Трехфазный двигатель в трехфазной сети может включаться двумя способами - с участием нейтрального провода или без него. Первый способ называется «звезда», в этом случае каждая из обмоток находится под (между фазой и нулем), равным в наших условиях 220 В. Схема подключения трехфазного двигателя «треугольником» предполагает последовательное соединение трех обмоток и подачу линейного (380 В) напряжения на узлы коммутации. Во втором случае двигатель будет выдавать большую примерно в полтора раза мощность.

Как включить мотор в обратном направлении?

Управление трехфазным двигателем может предполагать необходимость изменения направления вращения на противоположное, то есть реверс. Чтобы этого добиться, нужно просто поменять местами два провода из трех.

Для удобства изменения схемы в клеммной коробке двигателя предусмотрены перемычки, выполненные, как правило, из меди. Для включения «звездой» нежно соединить три выходных провода обмоток вместе. «Треугольник» получается немного сложнее, но и с ним справится любой электрик средней квалификации.

Фазосдвигающие емкости

Итак, порой возникает вопрос о том, как подключить трехфазный двигатель в обычную домашнюю розетку. Если просто попробовать подсоединить к вилке два провода, он вращаться не станет. Для того чтобы дело пошло, нужно сымитировать фазу, сдвинув подаваемое напряжение на какой-то угол (желательно 120°). Добиться этого эффекта можно, если применить фазосдвигающий элемент. Теоретически это может быть и индуктивность, и даже сопротивление, но чаще всего трехфазный двигатель в однофазной сети включается с использованием электрических обозначаемых на схемах латинской буквой С.

Что касается применений дросселей, то оно затруднено по причине сложности определения их значения (если оно не указано на корпусе прибора). Для замера величины L требуется специальный прибор или собранная для этого схема. К тому же выбор доступных дросселей, как правило, ограничен. Впрочем, экспериментально любой фазосдвигающий элемент подобрать можно, но это дело хлопотное.

Что происходит при включении двигателя? На одну из точек соединения подается ноль, на другую - фаза, а на третью - некое напряжение, сдвинутое на некоторый угол относительно фазы. Понятно и неспециалисту, что работа двигателя не будет полноценной в отношении механической мощности на валу, но в некоторых случаях достаточно самого факта вращения. Однако уже при запуске могут возникать некоторые проблемы, например, отсутствие начального момента, способного сдвинуть ротор с места. Что делать в этом случае?

Пусковой конденсатор

В момент пуска валу требуются дополнительные усилия для преодоления сил инерции и трения покоя. Чтобы увеличить момент вращения, следует установить дополнительный конденсатор, подключаемый к схеме только в момент старта, а затем отключающийся. Для этих целей лучшим вариантом является применение замыкающей кнопки без фиксации положения. Схема подключения трехфазного двигателя со стартовым конденсатором приведена ниже, она проста и понятна. В момент подачи напряжения следует нажать на кнопку «Пуск», и создаст дополнительной сдвиг фазы. После того как двигатель раскрутится до нужных оборотов, кнопку можно (и даже нужно) отпустить, и в схеме останется только рабочая емкость.

Расчет величины емкостей

Итак, мы выяснили, что для того, чтобы включить трехфазный двигатель в однофазной сети, требуется дополнительная схема подключения, в которую, помимо пусковой кнопки, входят два конденсатора. Их величину нужно знать, иначе работать система не будет. Для начала определим величину электрической емкости, необходимую для того, чтобы заставить ротор тронуться с места. При параллельном включении она представляет собой сумму:

С = С ст + Ср, где:

С ст - стартовая дополнительная отключаемая после разбега емкость;

С р - рабочий конденсатор, обеспечивающий вращение.

Еще нам потребуется величина номинального тока I н (она указана на табличке, прикрепленной к двигателю на заводе-изготовителе). Этот параметр также можно определить с помощью нехитрой формулы:

I н = P / (3 х U), где:

U - напряжение, при подключении «звездой» - 220 В, а если «треугольник», то 380 В;

P - мощность трехфазного двигателя, ее иногда в случае утери таблички определяют на глаз.

Итак, зависимости требуемой рабочей мощности вычисляются по формулам:

С р = Ср = 2800 I н / U - для «звезды»;

С р = 4800 I н / U - для «треугольника»;

Пусковой конденсатор должен быть больше рабочего в 2-3 раза. Единица измерения - микрофарады.

Есть и совсем уж простой способ вычисления емкости: C = P /10, но эта формула скорее дает порядок цифры, чем ее значение. Впрочем, повозиться в любом случае придется.

Почему нужна подгонка

Метод расчета, приведенный выше, является приблизительным. Во-первых, номинальное значение, указанное на корпусе электрической емкости, может существенно отличаться от фактического. Во-вторых, бумажные конденсаторы (вообще говоря, вещь недешевая) часто используются бывшие в употреблении, и они, как всякие прочие предметы, подвержены старению, что приводит к еще большему отклонению от указанного параметра. В-третьих, ток, который будет потребляться двигателем, зависит от величины механической нагрузки на валу, а потому оценить его можно только экспериментально. Как это сделать?

Здесь потребуется немного терпения. В результате может получиться довольно объемный набор конденсаторов, соединенных параллельно и последовательно. Главное - после окончания работы все хорошенько закрепить, чтобы не отваливались припаянные концы от вибраций, исходящих от мотора. А потом не лишним будет еще раз проанализировать результат и, возможно, упростить конструкцию.

Составление батареи емкостей

Если в распоряжении у мастера нет специальных электролитических клещей, позволяющий замерять ток без размыкания цепей, то следует подключить амперметр последовательно к каждому проводу, который входит в трехфазный двигатель. В однофазной сети будет протекать суммарное значение, а подбором конденсаторов следует стремиться к наиболее равномерной загрузке обмоток. При этом следует помнить о том, что при последовательном подключении общая емкость уменьшается по закону:

Также необходимо не забывать и о таком важном параметре, как напряжение, на которое рассчитан конденсатор. Оно должно быть не менее номинального значения сети, а лучше с запасом.

Разрядный резистор

Схема трехфазного двигателя, включенного между одной фазой и нейтральным проводом, иногда дополняется сопротивлением. Оно служит для того, чтобы на стартовом конденсаторе не накапливался заряд, остающийся после того, как машина уже выключена. Эта энергия может вызвать электрический удар, не опасный, но крайне неприятный. Для того чтобы обезопасить себя, следует параллельно с пусковой емкостью соединить резистор (у электриков это называется «зашунтировать»). Величина его сопротивления большая - от половины мегома до мегома, а по размерам он невелик, поэтому довольно и полуваттной мощности. Впрочем, если пользователь не боится быть «ущипнутым», то без этой детали вполне можно и обойтись.

Использование электролитов

Как уже отмечалось, пленочные или бумажные электрические емкости дорогие, и прибрести их не так просто, как хотелось бы. Можно произвести однофазное подключение трехфазного двигателя с использованием недорогих и доступных электролитических конденсаторов. При этом совсем уж дешевыми они тоже не будут, так как должны выдерживать 300 Вольт постоянного тока. Для безопасности их следует зашунтировать полупроводниковыми диодами (Д 245 или Д 248, например), но нелишним будет помнить о том, что при пробитии этих приборов переменное напряжение попадет на электролит, и он сперва сильно нагреется, а потом взорвется, громко и эффектно. Поэтому без крайней необходимости лучше все же использовать конденсаторы бумажного типа, работающие под напряжением хоть постоянным, хоть переменным. Некоторые мастера вполне допускают применение электролитов в пусковых цепях. В силу кратковременного воздействия на них переменного напряжения, они могут и не успеть взорваться. Лучше не экспериментировать.

Если нет конденсаторов

Где обычные граждане, не имеющие доступа к пользующимся спросом электрическим и электронным деталям, их приобретают? На барахолках и «блошиных рынках». Там они лежат, заботливо выпаянные чьими-то (обычно пожилыми) руками из старых стиральных машин, телевизоров и прочей вышедшей из обихода и строя бытовой и промышленной техники. Просят за эти изделия советского производства немало: продавцы знают, что если деталь нужна, то ее купят, а если нет - и даром не возьмут. Бывает, что как раз самого необходимого (в данном случае конденсатора) как раз и нет. И что же делать? Не беда! Сойдут и резисторы, только нужны мощные, желательно керамические и остеклованные. Конечно, идеальное сопротивление (активное) фазу не сдвигает, но в этом мире ничего нет идеального, и в нашем случае это хорошо. Каждое физическое тело обладает собственной индуктивностью, электрической мощностью и резистивностью, будь оно крошечной пылинкой или огромной горой. Включение трехфазного двигателя в розетку становится возможным, если на вышеприведенных схемах заменить конденсатор сопротивлением, номинал которого вычисляется по формуле:

R = (0,86 x U) / kI, где:

kI - величина тока при трехфазном подключении, А;

U - наши верные 220 Вольт.

Какие двигатели подойдут?

Перед тем как приобретать за немалые деньги мотор, который рачительный хозяин собирается использовать в качестве привода для точильного круга, циркулярной пилы, сверлильного станка или другого какого-либо полезного домашнего устройства, не помешает подумать о его применимости для этих целей. Не каждый трехфазный двигатель в однофазной сети вообще сможет работать. Например, серию МА (у него короткозамкнутый ротор с двойной клеткой) следует исключить, дабы не пришлось тащить домой немалый и бесполезный вес. Вообще, лучше всего сначала поэкспериментировать или пригласить опытного человека, электромеханика, например, и посоветоваться с ним перед покупкой. Вполне подойдет асинхронный двигатель трехфазный серии УАД, АПН, АО2, АО и, конечно же, А. Эти индексы указаны на заводских табличках.


В разных любительских электромеханических станках и устройствах в большинстве случаев используются трехфазные асинхронные двигатели с короткозамкнутым ротором. Увы, трехфазная сеть в обиходу — явление очень редкое, потому для их питания от обыкновенной электрической сети любители используют фазосдвигающий конденсатор, чтоне разрешает в полном объеме воплотить мощность и пусковые свойства мотора.

Асинхронные трехфазные электродвигатели, а конкретно именно их, в следствии широкого распространения, нередко приходится применять, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку.

Подключение "треугольник" (для 220 вольт)




Подключение "звезда" (для 380 вольт)

Распределительная коробка трехфазного двигателя с положением перемычек для подключения по схеме звезда

При включении трехфазного мотора к трехфазной сети по его обмоткам в различный момент времени по очереди начинает идти ток, создающий крутящееся магнитное поле, которое ведетвзаимодействие с ротором, принуждая его крутиться. При подключении мотора в однофазовую сеть, крутящий момент, способный двинуть ротор, не создается.

В случае если вы можете подсоединить движок на стороне к трехфазной сети то опредилить мощьность не тяжело. В разрыв одной из фаз ставим амперметр. Запускаем. Показания амперметра умнажаем на фазовое напряжение.

В хорошей сети оно 380. Получаем мощьность P=I*U. Отнимаем % 10-12 на КПД. Получаете фактически верный результат.

Для измерения оборотов есть мех-ские приборы. Хотя на слух также возможно определить.

Посреди различных методов включения трехфазных электродвигателей в однофазную сеть наиболее обычный - включение третьего контакта через фазосдвигающий конденсатор.

Подключение трехфазного двигателя к однофазной сети

Частота вращения трехфазного мотора, работающего от однофазовой сети, остается практически той же, как и при его подключении в трехфазную сеть. Увы, этого невозможно заявить о мощности, потери которой достигают значимых величин. Четкие значения потери силы находятся в зависимости от схемы включения, условий работы мотора, величины емкости фазосдвигающего конденсатора. Приблизительно, трехфазный движок в однофазовой сети утрачивает в пределах 30-50% собственной силы.

Не многие трехфазные электродвигатели готовы хорошо действовать в однофазовых сетях, но большая часть из них справляются с данной задачей полностью удовлетворительно - в случае если не считать потери мощности. В главном для работы в однофазовых сетях используются асинхронные движки с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).

Асинхронные трехфазные движки рассчитаны на 2 номинальных напряжения сети - 220/127, 380/220 и так далее Более всераспространены электродвигатели с рабочим напряжением обмоток 380/220В (380В - для "звезды", 220 - для "треугольника"). Наибольшее напряжение для "звезды", наименьшее - для "треугольника". В паспорте и на табличке движков не считая прочих характеристик указывается рабочее напряжение обмоток, схема их соединения и вероятность ее изменения.

Таблички трехфазных электродвигателей

Обозначение на табличке А гласит о том, что обмотки мотора имеют все шансы быть подключены как "треугольником" (на 220В), так и "звездой" (на 380В). При подключении трехфазного мотора в однофазовую сеть лучше применять схему "треугольник", так как в данном случае движок растеряет меньше силы, нежели при включении "звездой".

Табличка Б информирует, что обмотки мотора подсоединены по схеме "звезда", и в разветвительной коробке не учтена вероятность переключить их на "треугольник" (имеется не более чем 3 вывода). В данном случае остается либо смириться с большой утратой мощности, подключив движок по схеме "звезда", либо, внедрившись в обмотку электродвигателя, попробовать вывести отсутствующие концы, чтоб соединить обмотки по схеме "треугольник".

В случае если рабочее напряжение мотора составляет 220/127В, то к однофазной сети на 220В движок возможно подключить лишь по схеме "звезда". При включении 220В по схеме "треугольник", двигатель сгорит.

Начала и концы обмоток (различные варианты)

Наверное, главная сложность включения трехфазного мотора в однофазовую сеть состоит в том, чтоб разобраться в электропроводах, выходящих в распределительную коробку либо, при неимении последней, просто выведенных наружу мотора.

Самый обычный вариант, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме "треугольник". В данном случае необходимо просто подсоединить токоподводящие электропровода и рабочий и пусковой конденсаторы к клеммам мотора согласно схеме подключения.

В случае если в двигателе обмотки соединены "звездой", и имеется вероятность поменять ее на "треугольник", то такой случай также нельзя отнести к трудоемким. Необходимо просто поменять схему включения обмоток на "треугольник", использовав для этого перемычки.

Определение начал и концов обмоток. Дело обстоит труднее, в случае если в распределительную коробку выведено 6 проводов без указания про их принадлежности к конкретной обмотке и обозначения начал и концов. В данном случае дело сводится к решению 2-ух задач (Хотя до того как этим заниматься, необходимо попробовать поискать в сети некоторую документацию к электродвигателю. В ней быть может описано к чему относятся электропровода различных расцветок.):

определению пар проводов, имеющих отношение к одной обмотке;

нахождению начала и конца обмоток.

1-ая задачка решается "прозваниванием" всех проводов тестером (замером сопротивления). Когда прибора нет, возможно решить её при помощи лампочки от фонарика и батареек, подсоединяя имеющиеся электропровода в цепь поочередно с лампочкой. В случае если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Этим методом определяются 3 пары проводов (A, B и C на рисунке ниже) имеющих отношение к 3 обмоткам.

Определение пар проводов относящихся к одной обмотке

Вторая задача, нужно определить начала и концы обмоток, здесь будет несколько сложнее и будет необходимо наличие батарейки и стрелочного вольтметра. Цифровой для этой задачи не подойдет из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1и 2.

Нахождение начала и конца обмоток

К концам одной обмотки (к примеру, A) подключается батарейка, к концам иной (к примеру, B) - стрелочный вольтметр. Сейчас, когда порвать контакт проводов А с батарейкой, стрелка вольтметра качнется в какую-нибудь сторону. Потом нужно подключить вольтметр к обмотке С и сделать такую же операцию с разрывом контактов батарейки. По мере надобности меняя полярность обмотки С (меняя местами концы С1 и С2) необходимо добиться того, чтоб стрелка вольтметра качнулась в такую же сторону, как и в случае с обмоткой В. Точно так же проверяется и обмотка А - с батарейкой, подсоединенной к обмотке C либо B.

В конечном итоге всех манипуляций должно выйти следующее: при разрыве контактов батарейки с хоть какой из обмоток на 2-х других должен появляться электрический потенциал одинаковой полярности (стрелка устройства качается в одну сторону). Сейчас остается пометить выводы 1-го пучка как начала (А1, В1, С1), а выводы другого - как концы (А2, В2, С2) и соединить их по нужной схеме - "треугольник" либо "звезда" (когда напряжение мотора 220/127В).

Извлечение отсутствующих концов. Наверное, самый непростой вариант - когда движок имеет слияние обмоток по схеме "звезда", и нет способности переключить ее на "треугольник" (в распределительную коробку выведено не более чем 3 электропровода - начала обмоток С1, С2, С3) .

В данном случае для включения мотора по схеме "треугольник" нужно вывести в коробку отсутствующие концы обмоток С4, С5, С6.

Схемы включения трехфазного мотора в однофазную сеть

Включение по схеме "треугольник". В случае домашней сети, исходя из убеждений получения большей выходной мощности более подходящим считается однофазное включение трехфазных двигателей по схеме "треугольник". При всем этом их мощность имеет возможность достигать 70% от номинальной. 2 контакта в разветвительной коробке подсоединяются непосредственно к электропроводам однофазной сети (220В), а 3-ий - через рабочий конденсатор Ср к хоть какому из 2-ух первых контактов либо электропроводам сети.

Обеспечивание запуска. Запуск трехфазного мотора без нагрузки возможно производить и от рабочего конденсатора (подробнее ниже), но в случае если эл-двигатель имеет какую-то нагрузку, он либо не запустится, либо станет набирать обороты чрезвычайно медлительно. Тогда уже для быстрого запуска нужен вспомогательный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы врубаются лишь на время запуска мотора (2-3 сек, покуда обороты не достигнут приблизительно 70% от номинальных), потом пусковой конденсатор необходимо отключить и разрядить.

Комфортен пуск трехфазного мотора при помощи особенного выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными - пока же не будет нажата кнопка "стоп".

Выключатель для запуска электродвигателей

Реверс. Направление вращения двигателя зависит от того, к какому контакту ("фазе") подсоединена третья фазная обмотка.

Направлением вращения возможно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному переключателю, соединенному двумя своими контактами с первой и 2-ой обмотками. Зависимо от положения переключателя движок станет крутиться в одну либо другую сторону.

На рисунке ниже представлена схема с пусковым и рабочим конденсатором и клавишей реверса, дозволяющая производить комфортное управление трехфазным двигателем.

Схема подключения трехфазного двигателя к однофазной сети, с реверсом и кнопкой для подключения пускового конденсатора

Подключение по схеме "звезда". Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.


Конденсаторы. Нужная емкость рабочих конденсаторов для работы трехфазного мотора в однофазной сети находится в зависимости от схемы включения обмоток мотора и прочих характеристик. Для соединения "звездой" емкость рассчитывается по формуле:

Cр = 2800 I/U

Для соединения "треугольником":

Cр = 4800 I/U

Где Ср - емкость рабочего конденсатора в мкФ, I - ток в А, U - напряжение сети в В. Ток рассчитывается по формуле:

I = P/(1.73 U n cosф)

Где Р - мощность электродвигателя кВт; n - КПД двигателя; cosф - коэффициент мощности, 1.73 - коэффициент, определяющий соответствие меж линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке мотора. Традиционно их значение располагается в спектре 0,8-0,9.

На практике значение емкости рабочего конденсатора при подсоединении "треугольником" возможно счесть по облегченной формуле C = 70 Pн, где Pн - номинальная мощность электродвигателя в кВт. Согласно данной формуле на каждые 100 Вт мощности электродвигателя нужно около 7 мкФ емкости рабочего конденсатора.

Корректность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. В случае если её значение оказывается больше, нежели потребуется при этих условиях работы, движок станет перенагреваться. Ежели емкость оказалась менее требуемой, выходная мощность электродвигателя станет очень низкой. Имеет резон подыскивать конденсатор для трехфазного мотора, начиная с небольшой емкости и равномерно повышая её значение до рационального. В случае если есть возможность, гораздо лучше выбрать емкость измерением тока в электропроводах присоединенных к сети и к рабочему конденсатору, к примеру токоизмерительными клещами. Значение тока должно быть более близким. Замеры следует производить при том режиме, в каком движок будет действовать.

При определении пусковой емкости исходят, сначала, из требований создания нужного пускового момента. Не перепутывать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.

В случае если по условиям работы запуск электродвигателя случается без нагрузки, то пусковая емкость традиционно принимается одинаковой рабочей, другими словами пусковой конденсатор не нужен. В данном случае схема подключения упрощается и удешевляется. Для такового упрощения и основное удешевления схемы, возможно организовать вероятность отключения нагрузки, к примеру, сделав возможность быстро и комфортно изменять положение мотора для падения ременной передачи, либо сделав для ременной передачи прижимающей ролик, к примеру, как у ременного сцепления мотоблоков.

Запуск под нагрузкой требует присутствия доборной емкости (Сп) подключаемой временно пуска двигателя. Повышение отключаемой емкости приводит к возрастанию пускового момента, и при неком конкретном ее значении момент достигает собственного наибольшего значения. Дальнейшее повышение емкости приводит к обратному эффекту: пусковой момент начинает убавляться.

Отталкиваясь от условия пуска двигателя под нагрузкой ближайшей к номинальной, пусковая емкость обязана быть в 2-3 раза более рабочей, то есть, в случае если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора обязана быть 80-160 мкФ, что обеспечит пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Хотя в случае если двигатель имеет маленькую нагрузку при запуске, емкость пускового конденсатора быть может меньше либо ее может и небыть вообще.

Пусковые конденсаторы действуют недолговременное время (всего несколько секунд за весь период подключения). Это дает возможность использовать при запуске двигателя более дешевые пусковые электролитические конденсаторы, специально созданные для данной цели.

Заметим, что у двигателя присоединенного к однофазной сети через конденсатор, работающего в отсутствии нагрузки, по обмотке, питаемой через конденсатор, следует ток на 20-30% превосходящий номинальный. Потому, в случае если движок используется в недогруженном режиме, то емкость рабочего конденсатора надлежит минимизировать. Но тогда уже, в случае если движок запускался без пускового конденсатора, последний имеет возможность потребоваться.

Гораздо лучше применять не 1 великий конденсатор, а несколько гораздо меньше, частично из-за способности подбора хорошей емкости, подсоединяя добавочные либо отключая ненадобные, последние применяют в качестве пусковых. Нужное число микрофарад набирается параллельным соединением нескольких конденсаторов, отталкиваясь от того, что суммарная емкость при параллельном соединении подсчитывается по формуле:

Определение начала и конца фазных обмоток асинхронного электродвигателя









Довольно часто в промышленном и домашнем хозяйстве используются трехфазные асинхронные двигатели. Этот тип двигателей является достаточно распространенным, поэтому большинство привычных для нас устройств, работающих на двигательной тяге, работают именно на таких. Состоит данный двигатель всего из двух основных частей – подвижного ротора и статора (соответственно, неподвижного). В сердечнике статора укладываются обмотки под специальным угловым расстоянием, которое равно 120 электрическим градусам. Начала и концы этих обмоток выводятся в распределительную коробку, где закрепляются на специальных клеммах. Как правило, эти выводы обозначены буквой С – С1, С2 и до С6 соответственно. Обмотки могут, соединяются двумя типами электрических схем – «звезда» и «треугольник». В схеме звезда концы обмоток соединяются друг с другом, а начала обмоток подключаются к питающему напряжению. Схема треугольник заключается в последовательном соединении, то есть начало одной обмотки соединяется с концом каждой другой обмотки и так далее.

Так подключается трехфазный двигатель, согласно схеме треугольник


Внутренность распределительной коробки двигателя, с выставленным положением перемычек под соединение в треугольник

Обычно, в распределительной коробке, все выходы контактов и их клеммы располагаются в сдвинутом порядке напротив. То есть, напротив контакта С1 находиться С6, а напротив клеммы С2 располагается С4.

Вот по такой схеме располагаются контакты в распределительной коробке


Так подключается трехфазный двигатель, согласно схеме «звезда»


Вживую, распределительная коробка с подключением «звездой» выглядит таким вот образом

Подключая трехфазный двигатель, соответственно, к трехфазной сети, внутри обмоток статора в разные моменты времени начинает протекать электрический ток, который в свою очередь создает вращающее магнитное поле. Это вращающее магнитное поле посредством магнитной индукции приводит в движение ротор двигателя, вследствие чего он начинает вращаться. Если подключить трехфазный двигатель в однофазную сеть, в машине не возникнет достаточного вращающего момента, и он попросту не включится.

Естественно, он не запустится, если его запускать напрямую. Но, существуют способы, при помощи которых подключение «трехфазника» в сеть все-таки возможно. Одним из самых простых является подключение фазосдвигающего конденсатора в качестве третьего контакта.

Вот так подключается трехфазный двигатель в домашних условиях (однофазной сети)

Трехфазный двигатель, работающий в однофазной сети, имеет практически ту же частоту вращения, что и при работе в трехфазной. Но, при таком подключении мощность асинхронного двигателя в значительной степени уменьшается. Это обуславливается недостаточной мощностью в самой сети (в сравнении с трехфазной). Чтоб сказать, насколько точно теряется мощность при однофазном подключении, необходимо знать схему подключении, условия работы асинхронного двигателя, а также величину емкости конденсатора. Но, в среднем каждый трехфазный двигатель, подключенный в однофазную сеть, может потерять до 30-ти и даже 50% собственной мощности.

Заметим, что далеко не все трехфазные двигатели могут вести себя нормально в однофазной сети. Поэтому, если вы подключили его, и уверены в правильности подключения, но при этом он напрочь отказывается работать, не переживайте. С большой долей вероятности это значит что, что-то не в порядке с самим двигателем. Конечно, преимущественное большинство должно работать нормально, не учитывая потерю мощности. Поэтому, самыми надежными в работе с однофазной сетью, показали себя асинхронные двигатели с индексами «А» и «АОЛ», «АО2» и «АПН». Все они имеют короткозамкнутый ротор.

Как правило, трехфазные асинхронные двигатели имеют две категории по номинальному напряжению – это работа в сетях 220/127В и 380/220В. Двигатели на более низком напряжении используются при малых мощностях, поэтому распространение у них небольшое. Таким образом, именно категория 380/220В является более распространенной. Напряжение в 380В используется при соединении в «звезду», соответственно напряжение 220В используется при схеме «треугольник». В паспорте двигателя и на его бирке, обычно указывают все основные рабочие характеристики и величины, среди которых рабочее напряжение, частота сети, коэффициент мощности, а также приведены условными рисунками схема соединения обмоток и какая существует возможность ее изменения.

Так выглядят бирки на корпусах трехфазных электродвигателей

На рисунке «А» бирка свидетельствует о том, что обмотки могут соединяться в обе схемы, как говорилось выше. То есть, можно подключить как «треугольник» на напряжение 220В, так и «звезду» на 380В. Отметим, что подключая такой двигатель в однофазную сеть, используйте схему соединения «треугольник», так как при соединении в «звезду» потеря мощности будет в значительной степени выше.

На рисунке «Б» бирка говорит о том, что в двигателе применяется схема соединения «звезда». При этом ответствует возможность включение схемы «треугольник». Если вы видите такой значок, то знайте, что в распределительной коробке иметься лишь три вывода. Поэтому, чтоб выполнить соединение «треугольник», нужно будет проникнуть внутрь двигателя, найти и вывести остальные концы наружу. Сделать это не так уж просто, поэтому будьте предельно внимательными.

Важный момент! Если на бирке двигателя указано рабочее напряжение в виде 220/127В знайте, что при подключении к однофазной сети на рабочее напряжение 220В его можно лишь со схемой «звезда» и никак больше. При попытке подключить двигатель со схемой «треугольник» в сеть 220В, он попросту сгорит.

Как разобраться в началах и концах обмоток?

Одной из самых запутанных сложностей, при подключении трехфазного двигателя в бытовую сеть является неразбериха, возникающая с проводами, которые выходят в распределительную коробку. Более того, в некоторых случаях коробка может отсутствовать, и вам самостоятельно придется разбираться, где и какой провод.

Наиболее простым случаем является тот, в котором обмотки соединены в схему «треугольника» при рабочем напряжении двигателя 380/220В. Так, необходимо лишь подключить токопроводящие провода из сети, подсоединив рабочий и пусковой конденсаторы в распределительной коробке к клеммам, согласно пусковой схеме. Когда схема соединения двигателя замкнута на «звезду», но при этом есть возможность сделать переключение ее на «треугольник», необходимо воспользоваться этим, изменив схему используя контактные перемычки.

Теперь, что же касается определения начала и концов всех обмоток. Довольно трудно, когда в распределительной коробке попросту торчат 6 проводов без каких-либо обозначений. В таком случае сложно понять, какой из проводов обмоток является началом, а какой же все-таки концом. Поэтому придется несколько поднапрячься и решить эту задачу. Прежде чем производить какие-либо действия с двигателем, загляните в Интернет, указав марку двигателя. Быть может, в сети имеются какие-то документы, способны расшифровать имеющуюся проводку. Но, если никакой полезной информации так и не нашлось, действуем следующим образом

Определяем пары проводов, которые причастны к одной и той же обмотке;

И определяем, какой из выводов является началом, а какой концом.

Определение пар проводов производится «прозвонкой» при помощи тестера (устанавливается режим замера сопротивление). Если такого прибора под рукой нет, можно воспользоваться «дедовским» способом, и определить принадлежность концов обмоток с помощью лампочки и батарейки. Если же лампочка загорается (или прибор показывает наличие сопротивления), это значит, что два провода принадлежат одной и той же обмотке. Таким образом, определяются и остальные пары выводов обмоток (на рисунке ниже это показано на схеме).

Во второй задаче предстоит узнать, какой из выводов является началом, а который концом. Для этого нам потребуется взять батарейку и стрелочный вольтметр (электронный прибор для этого не подойдет). И затем, определяем начала и концы обмоток согласно схеме, приведенной ниже.

Итак, батарейка подключается к концам одной обмотки (пусть это будет А , как на рисунке), а к концам обмотки В подключим имеющийся вольтметр. При разрыве контактов проводом батарейки на обмотке А , стрелка вольтметра на В , должна отклониться в какую-либо из сторон. Запомните в какую, и проделайте то же действие на обмотке С , подключив к ней вольтметр. Теперь, добейтесь того чтоб стрелка вольтметра на обмотке С отклонялась в ту же сторону, что и на обмотке В . Это можно достичь путем изменения полярности (сменой концов С1 и С2 ). Аналогичным образом проверяется обмотка А . Тогда, батарейка будет подключена к С или В , а вольтметр, соответственно к А .

Таким образом, после «прозвонки» всех обмоток, вы должны получить некоторую закономерность. Разрывая контакты батарейки на какой-либо обмотке, остальные две должны показать отклонение стрелки вольтметра в одну и ту же сторону (это свидетельствует об одинаковой полярности). После чего, остается сделать отметки на выводах (начал) с одной стороны (А1, В1 и С1), и выводы (концы) с другой стороны А2, В2 и С2. На завершающем этапе, соединить концы в соответствующие схемы «звезда» или «треугольник».

Как извлечь недостающие концы обмотки?

Данный случай является, пожалуй, одним из самых трудных. Так, двигатель, соединенный в «звезду» не переключается в «треугольник». На практике же, открыв распределительную коробку, вы увидите лишь три вывода (С1, С2 и С3). Остальные три (С4, С5 иС6) придется доставать изнутри двигателя. На рисунке ниже наглядно показан именно такой случай.

Бирка электродвигателя с рассматриваемым случаем


А так будет выглядеть внутренность клеммной коробки

Во-первых, необходимо разобрать двигатель, чтоб получился свободный доступ к статору. Для этого нужно снять торцевую крышку двигателя, удерживающуюся на болтах, и извлечь его подвижную часть – ротор. Теперь, нужно отыскать место спайки остальных концов обмоток, и очистить его от изоляции. После, разъединить концы выводов и припаять к ним, заранее подготовленные, многожильные провода в гибкой изоляции. Место пайки изолировать дополнительно, и закрепить провода крепкой нитью на обмотках статора. В конечном итоге, дополнительно припаянные провода выводятся в распределительную коробку.

Теперь, нужно определить начала и концы обмоток вышеупомянутым способом, и обозначить все имеющиеся выводы С1, С2 и так далее. После идентификации всех проводов, можно смело выполнить соединение по схеме «треугольник». Отметим, что такие действия требуют определенного опыта и навыков. На словах, в этом нет ничего сложного, но на самом деле в спайках проводов внутри статора можно запутаться, и замкнуть обмотки накоротко (к примеру). Поэтому, если нет особой потребности в соединении треугольником, лучше оставить соединение как есть, то есть «звездой».

Статор трехфазного электродвигателя



Припайка дополнительных проводов



В такой способ провода крепко прикручиваются



Вывод проводников в распределительную коробку



Соединение проводников в схему «треугольник»


Схемы, которые используются при подключении трехфазного двигателя в бытовую сеть

Схема «треугольник».

Данная схема, является наиболее целесообразной и подходящей для бытовой сети, поскольку выходная мощность трехфазного двигателя в данном случае будет несколько большей, чем при других схемах. Так, мощность «треугольного» соединения может составлять 70% от ном. мощности двигателя. В распределительной коробке это выглядит следующим образом: два контакта подсоединяются в сеть, а третий подключается на рабочий конденсатор Ср, затем к любому из контактов сети.

Вот так изображается схема на бумаге

А таким образом это выглядит на практике


Осуществление пуска

Запуск трехфазного двигателя на холостом ходу возможно с использованием рабочего конденсатора. Но, в случае, если на нем будет хоть незначительная нагрузка, он может, не запустится, или же включиться и работать на малых, недостаточных оборотах. Поэтому, в таких случаях используется дополнительное оборудование, а именно пусковой конденсатор Сп. Расчеты по определения необходимой емкости конденсатора вы можете найти ниже. Для справки, такие конденсаторы (в других случаях это может быть группа конденсаторов), служат лишь для пуска двигателя. Следовательно, их время работы очень малое – как правило, миллисекунды, но может доходить и до 2х секунд. За такой короткий промежуток двигатель должен успеть набрать необходимую мощность.

Схема с пусковым конденсатором Сп

Для более удобного эксплуатирования двигателя, в схему пуска и работы можно добавить выключатель. Работает он по простому принципу, в котором одна пара контактов замыкается при нажатии на кнопку «Пуск». В таком режиме работает вся схема до тех самых пор, пока не нажмут кнопку «Стоп» и контакты разомкнутся.

Выключатель, сделанный в СССР

Применение реверса

Вращение ротора в ту или иную сторону зависит от того, к какой фазе подключена третья обмотка.

Реверсивная схема

Поэтому, подсоединив к третьей обмотке дополнительный конденсатор с переключателем (тумблером), который подключается к контактам первой и второй обмотки, мы сможем менять направление вращения ротора трехфазного электродвигателя. Ниже, наглядно продемонстрирована схема с применением всех трех вышеупомянутых способов, которая поможет сделать более удобным работу с трехфазным двигателем.

Включение со схемой «звезда»

Данная схема используется при подключении «трехфазников» в бытовую сеть, если их обмотки работают на напряжении 220/127В.

Подключение трехфазного электродвигателя «звездой»


Расчет необходимых емкостей конденсаторов. Итак, расчет емкости рабочих конденсаторов производится, исходи из схемы подключения двигателя и множества других параметров. В случае с соединением в «звезду» расчет проводится следующим образом:

Ср=2800∙ I/U;

Соединяя обмотки треугольником, рабочую емкость рассчитывайте так:

Cp=4800∙I/U;

Здесь, рабочая емкость конденсатора обозначается Ср и измеряется в мкФ, а I и U – ток и напряжение соответственно. При этом U =220В, а то рассчитываем по выражению:

I =P/(1,73∙U∙n∙cosϕ );

P – обозначает мощность двигателя;

N – КПД «трехфазника»;

Cosϕ – коэффициент мощности;

1,73 – показывает отношение между линейным и фазным током.

Величины КПД и коэффициента мощности можно посмотреть на бирке электродвигателя. Как правило, эти величины примерно колеблются в пределах 0,8-0,9.

Практика показывает, что величина емкости рабочих конденсаторов может рассчитываться по уравнению C =70∙ P н ; где в качестве Рн выступает номинальная мощность. Эта формула сообразна при подключении обмоток на «треугольник», и согласно ей, для каждых 100 Вт потребуется порядка 7 мкФ емкости. От того, насколько правильно подобран конденсатор, зависит стабильная работа электродвигателя. В случае если емкость подобрана несколько выше, чем нужно, двигатель будет испытывать перегрев. Если же пусковая емкость оказалась меньше чем это необходимо, мощность двигателя будет несколько заниженной. Конденсаторы можно выбирать методом подбора. Так, начиная с конденсаторов малой емкости, переходите к более мощным до оптимального выбора. Если же существует возможность измерить ток в сети и на рабочем конденсаторе, то есть вероятность подобрать наиболее точный конденсатор. Проводить данный замер нужно в рабочем режиме двигателя.

Пусковая емкость рассчитывается исходя из требования по созданию достаточного пускового момента. Не стоит путать емкость пускового конденсатора, с величиной пусковой емкости. К примеру, на схемах выше, пусковая емкость является суммой двух емкостей Ср и Сп.

Если же электродвигатель будет использоваться на холостом ходу, то за пусковую емкость можно принять рабочую, притом, что пусковой конденсатор уже не потребуется. В таких случаях схема во многом упрощается и удешевляется. Такие меры помогут отключить нагрузку, с возможностью быстрого и удобного изменения положения двигателя, к примеру, для ослабления ременной передачи, или же сделать прижимной ролик для нее.

Пример клиноременной передачи мотоблока

Запуск двигателя требует дополнительную емкость Сп, которая требуется только на пуск. Если же увеличить отключаемую емкость, это приведет к увеличению пускового момента, и при каком-то значении пусковой момент достигнет пикового значения. Но, с дальнейшим увеличением емкости пусковой момент будет лишь падать, и это нужно учесть.

Исходя из всех расчетов и условий запуска электродвигателя под нагрузкой, которая близка к номинальной, величина пусковой емкости должна превышать рабочую в 2 а то и 3 раз. К примеру, если емкость на рабочем конденсаторе равна 80 мкФ, то у пускового конденсатора эта емкость будет иметь 80-160 мкФ. Это в сумме даст пусковую емкость (которая как говорилось, является сумой Ср и Сп) в 160-240 мкФ. Однако, если же нагрузка во время запуска незначительна, емкость пускового конденсатора будет несколько меньшей, а то и вовсе отсутствовать. Конденсаторы, работающие на запуск двигателя, на самом деле работают миллисекунды, поэтому они долго эксплуатируются, и, как правило, вполне хватает бюджетных моделей.

Куда лучшим вариантом является применение не одного конденсатора, а группы, объединенной в конденсаторный мост. Это более удобно в том плане, что подключив группу, можно более точно настроить необходимую емкость, отключая или подключая конденсаторы. Мелкие конденсаторы, образующие мост, подключаются параллельно потому, что при таком соединении емкости слаживаются: Собщ=С 1 2 3 +…+С n .

Так выглядит параллельное соединение

В роли рабочих конденсаторов служат металлизированные бумажные, а также отлично подходят пленочные конденсаторы типа МБГО, К78-17, БГТ и т.д. Напряжение по допустимой величине должно превышать при работе электродвигателя напряжение сети не менее, чем в 1,5-2 раза.

Таким образом, подключение трехфазного двигателя к однофазной сети требует тщательного математического анализа и некоторого опыта работы с электротехническим оборудованием.

Еще кое-что об электрике:

Собираемся рассмотреть, как производится подключение трехфазного двигателя к однофазной сети, дать рекомендации по управлению агрегатом. Чаще люди хотят варьировать скорость вращения или направление. Как это сделать? Описывали размыто ранее, как подключить трехфазный двигатель на 230 вольт, теперь озаботимся деталями.

Стандартная схема включения трехфазного двигателя в однофазную сеть

Процесс подключения трехфазного двигателя к напряжению 230 вольт прост. Обычно ветка несет синусоиду, разница составляет 120 градусов. Формируется фазовый сдвиг, равномерный, обеспечивает плавность вращения электромагнитного поля статора. Действующее значение каждой волны составляет 230 вольт. Это позволит подключить трехфазный двигатель к домашней розетке. Фокус цирковой: получить три синусоиды, используя одну. Сдвиг фаз равен 120 градусов.

На практике означенное сделать можно, заручившись помощью специальных приборов фазовращателей. Не тех, что используются высокочастотными трактами волноводов, а специальных фильтров, сформированных пассивными, реже активными элементами. Любители заморочкам предпочитают применение заправского конденсатора. Если обмотки двигателя соединить треугольником, сформировав единое кольцо, получим сдвиги фаз 45 и 90 градусов, хватает худо-бедно для неуверенной работы вала:

Схема подключения трехфазного двигателя коммутацией обмоток треугольником

  1. На одну обмотку подается фаза розетки. Провода цепляют разницу потенциалов.
  2. Вторая обмотка запитывается конденсатором. Формируется сдвиг фаз 90 градусов относительно первой.
  3. На третьей за счет приложенных напряжений образуется слабо похожее на синусоиду колебание со сдвигом еще на 90 градусов.

Итого, третья обмотка отстоит от первой по фазе на 180 градусов. Показывает практика, расклада хватает нормально работать. Разумеется, двигатель иногда «залипает», сильно греется, мощность падает, хромает КПД. Пользователи мирятся, когда подключение асинхронного двигателя к трехфазной сети исключено.

Из чисто технических нюансов добавим: схема правильной раскладки проводов приводится на корпусе прибора. Чаще украшает внутреннюю сторону кожуха, скрывающего колодку, либо вычерчена неподалеку на шильдике. Руководствуясь схемой, поймем, как подключить электродвигатель с 6 проводами (по паре на каждую обмотку). Когда сеть трёхфазная (часто называют 380 вольт), обмотки соединяются звездой. Образуется одна общая катушкам точка, куда стыкуется нейтраль (условный схемный электрический нуль). На прочие концы подаются фазы. Получается три — по числу обмоток.

Как обращаться с треугольником для подключения трехфазного двигателя на 230 вольт, понятно. Дополнительно приводим рисунок, изображающий:

  • Схему электрического соединения обмоток.
  • Рабочий конденсатор, служащий цели создания правильного распределения фаз.
  • Пусковой конденсатор, облегчающий раскрутку вала на начальных оборотах. В последующем отключается от схемы кнопкой, разряжается шунтирующим резистором (для безопасности и пребывания в готовности к новому циклу пуска).

Подключение трехфазного двигателя 230 вольт треугольником

Картинка показывает: обмотка А находится под напряжением 230 вольт. На С подается со сдвигом фаз 90 градусов. Благодаря разности потенциалов, концы обмотки В формируют напряжение, сдвинутое на 90 градусов. Очертания далеки привычной школьным физикам синусоиде. Опущены в целях упрощения пусковой конденсатор, шунтирующий резистор. Считаем, расположение очевидно из сказанного выше. Подобная методика худо-бедно позволит добиться от двигателя нормальной работы. Клавишей пусковой конденсатор замыкается, осуществляя пуск, отключается от фазы, разряжается шунтом.

Пришло время сказать: емкость, обозначенная чертежом 100 мкФ, практически выбирается, учитывая:

  1. Частоты вращения вала.
  2. Мощность двигателя.
  3. Нагрузки, ложащиеся на ротор.

Подбирать нужно конденсатор экспериментальным путем. Согласно нашему рисунку, напряжение обмоток В и С будет одинаковым. Напоминаем: тестер показывает действующее значение. Фазы напряжения будут различны, форма сигнала обмотки В несинусоидальная. Действующее значение показывает: в плечи отдается одинаковая мощность. Обеспечивается боле менее стабильная работа установки. Мотор меньше греется, оптимизируется КПД двигателя. Каждая обмотка сформирована индуктивным сопротивлением, которое также накладывает отпечаток на сдвиг фаз между напряжением и током. Вот почему важно подобрать правильное значение емкости. Можно добиться идеальных условий работы двигателя.

Заставить двигатель крутиться в обратном направлении

Три фазы напряжения 380 вольт

При подключении на три фазы смена направления вращения вала обеспечивается правильной коммутацией сигнала. Применяются специальные контакторы (три штуки). 1 на каждую фазу. В нашем случае коммутации подлежит всего одна цепь. Причем (руководствуясь утверждениями гуру) достаточно обменять местами любые два провода. Будь то питание, место стыковки конденсатора. Проверим правило прежде выдачи напутствия читателям. Результаты демонстрирует второй рисунок, схематично приводящий эпюры, показывающие распределение фаз указанного случая.

Изготавливая эпюры, предполагали: обмотка С соединена последовательно конденсатору, дающему напряжению положительный прирост фазы. Согласно векторной диаграмме, для сохранения баланса на обмотке С должен быть отрицательный знак относительно основного напряжения. С другой стороны конденсатор, катушка В соединены параллельно. Одна ветвь обеспечивают напряжению положительный прирост (конденсатор), другая – току. Сродни параллельному колебательному контуру, токи ветвей текут практически в противоположную сторону. Учитывая сказанное, приняли закон изменения синусоиды противофазно относительно обмотки С.

Эпюры показывают: максимумы, согласно схеме, обходят обмотки против часовой стрелки. Прошлым обзором показывали аналогичным контекстом: вращение идет иным направлением. Получается, действительно при смене полярности питания вал вращается в противоположную сторону. Не будем рисовать распределение магнитных полей, считаем излишним повторяться.

Точнее подобные вещи позволят просчитывать специальные компьютерные программы. Объяснение дали на пальцах. Получилось, что практики правы: поменяв полярность питания, направление движения вала обратим противоположно. Наверняка аналогичное утверждение годится случаю включения конденсатора ветвью другой обмотки. Жаждущим подробных графиков рекомендуем изучать специализированные программные пакеты наподобие бесплатной Electronics Workbench. В приложении проставите угодное число контрольных точек, отследите законы изменения токов, напряжений. Любителям поиздеваться над своим мозгом будет возможность просмотра спектра сигналов.

Потрудитесь правильно задать индуктивности обмоток. Разумеется, влияние вносит нагрузка, препятствующая запуску. Учесть потери подобными программами сложно. Практики рекомендуют избегать заострять внимание указанной точилкой, подбирать номиналы конденсаторов (эмпирическим) опытным путем. Таким образом, точная схема подключения трехфазного двигателя определена конструкцией, предполагаемым целевым назначением. Допустим, токарный станок будет отличаться от хлеборушки развивающимися нагрузками.

Пусковой конденсатор трехфазного двигателя

Чаще подключение трехфазного двигателя к однофазной сети нужно вести с участием пускового конденсатора. Особенно аспект касается мощных моделей, моторов под значительной нагрузкой на старте. В этом случае увеличивается собственное реактивное сопротивление, которое придется компенсировать при помощи емкостей. Проще подобрать опять же экспериментально. Нужно собрать стенд, на котором имеется возможность «на горячую» включать, исключать из цепи отдельные емкости.

Избегайте помогать двигателю запуститься рукой, как демонстрируют «бывалые» мастера. Просто найдите значение батареи, при котором вал бодро вращается, по мере раскрутки начинайте исключать из цепи конденсаторы один за другим. Пока останется такой набор, ниже которого двигатель не вращается. Отобранные элементы образуют пусковую емкость. А правильность своего выбора нужно контролировать при помощи тестера: напряжение в плечах обмоток со сдвинутой фазой (в нашем случае С и В) должно быть одинаковым. Это значит, что отдается примерно равная мощность.

Трехфазный двигатель с пусковым конденсатором

Что касается оценок и прикидок, емкость батарей растет с увеличением мощности, оборотов. А если говорить о нагрузке, большое влияние оказывает на старте. Когда вал раскрутится, в большинстве случаев малые препятствия преодолеваются за счёт инерции. Чем массивнее вал, тем выше шанс, что двигатель не «заметит» возникшего затруднения.

Обратите внимание, что подключение асинхронного двигателя обычно ведется через защитный автомат. Устройство, которое остановит вращение при превышении током некоторого значения. Это не только уберегает пробки местной сети от выгорания, но и спасет обмотки двигателя при заклинивании вала. В этом случае ток резко повысится, и работа устройства прекратится. Небесполезен автомат защиты и при подборе нужного номинала емкости. Очевидцы утверждают, что если подключение 3-фазного двигателя в однофазную сеть ведется через слишком слабые конденсаторы, то нагрузка резко возрастает. В случае наличия мощного мотора это очень важно, потому что даже в нормальном режиме потребление превышает номинальное в 3-4 раза.

И пара слов о том, как оценить заранее пусковой ток. Допустим, нужно подключить асинхронный двигатель на 230 мощностью 4 кВт. Но это для трех фаз. В случае штатной проводки ток по каждой из них течет отдельно. У нас же все это будет складываться. Поэтому смело делим мощность на напряжение сети и получаем 18 А. Понятно, что без нагрузки подобный ток вряд ли будет расходоваться, но для стабильной работы двигателя на полную катушку нужен защитный автомат потрясающей мощности. Что касается простого тестового запуска, то вполне сгодится устройство ампер на 16. И даже есть шанс, что старт пройдет без эксцессов.

Надеемся, читатели теперь знают, как подключить трехфазный двигатель в домашнюю сеть на 230 вольт. Осталось к этому добавить, что возможности стандартной квартиры не превышают с точки зрения отдачи мощности потребителю значения порядка 5 кВт. Это значит, описанный выше двигатель дома попросту включать опасно. Обратите внимание, что даже болгарки редко бывают мощнее 2 кВт. При этом двигатель оптимизирован для работы в однофазной сети 220 вольт. Проще говоря, слишком мощные устройства не только вызовут моргание света, но скорее всего, спровоцируют возникновение других нештатных ситуаций. В лучшем случае выбьет пробки, в худшем – случится возгорание проводки.

На этом говорим «до свидания» и хотим заметить: знание теории иной раз полезно практикам. Особенно если дело касается мощной техники, способной причинить немалый вред.

Подключение трехфазного электродвигателя

Асинхронный трехфазный двигатель уверенно стоит в лидирующих позициях во всех сферах применения электродвигателей. В основном такие электродвигателя выпускаются с расчетом на два номинальных напряжения трехфазной сети 380/220. Подключение трехфазного электродвигателя к тому или иному напряжению возможно переключением обмоток со «звезды» (380 В) на «треугольник» (220В).

Для того чтобы понять как подключить электродвигатель нужно обратить внимание на колодку куда выходят концы с обмоток. Обязательно нужно обратить внимание как расположены перемычки в большинстве электродвигателей расположение перемычек указано на крышке борна (коробочка на двигателе куда выходят концы обмоток). Бывает что у электродвигателя отсутствует колодка тогда завод изготовитель выводит два пучка по три конца обмотки в каждом. То есть в первом пучке собраны концы начала обмоток, а во втором пучке собраны концы обмоток.

Подключение трехфазного электродвигателя в звезду – это соединение обмоток с нулевой точкой, то есть говоря проще у вас есть два пучка проводов. Как писалось выше один пучок начало обмоток, второй пучок конец обмоток. Берем любой из этих пучков и соединяем три конца вместе при помощи болтика с шайбами (это и есть нулевая точка). Или если есть колодочное соединение, то замыкаем три конца обмоток специальными перемычками, которые идут в комплекте электродвигателя. На оставшиеся три конца обмоток, подаем три фазы и в итоге мы получаем подключение электродвигателя звездой.

Если получилось неправильное вращение электродвигателя, то исправить это можно путем переброса фаз в том пучке, куда подается напряжение.

Подключение трехфазного электродвигателя в треугольник – это подключение обмоток электродвигателя последовательно. То есть конец одной обмотки это начало другой. Для того чтобы правильно подключить электродвигатель в треугольник, нужно определить концы каждой из обмоток разложить их попарно и исходя из схемы ниже правильно подключить.

Главное придерживайтесь правила « конец одной обмотки начало другой». Также как и в подключением в треугольник правильное вращение электродвигателя достигается путем переброса фаз.

Неправильное подключение электродвигателя это одна из причин неисправности электродвигателей.

На табличке электродвигателя предоставлена вся информация о возможном подключении его в трехфазную сеть, необходимо правильно использовать предоставленные данные чтобы избежать дорогостоящих поломок оборудования. В следующей статье рассмотрим